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About the speaker

● Working in game/graphics dev since 1994
● Previously at Sierra, Apple, Naughty Dog

● Current projects:
● Slug Library, C4 Engine, The 31st, FGED
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About this talk

● Unicode
● Glyphs
● TrueType
● Font Rendering
● Typography
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Unicode

● Defines character codes
● Originally 16-bit
● Now has range 0x000000 – 0x10FFFF
● Divided into 17 “planes” 
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Basic Multilingual Plane

● 0x0000 – 0xFFFF
● First 128 code points are ASCII
● Lots of other common scripts/languages
● Lots of common symbols
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Basic Multilingual Plane
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Supplementary Multilingual Plane

● 0x010000 – 0x01FFFF
● Rare characters from many languages
● Rare scripts like Cuneiform and Hieroglyphs
● Mathematical symbols and bold / italic
● Emoticons
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Supplementary Multilingual Plane
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Supplementary Ideographic Plane

● 0x020000 – 0x02FFFF
● Less common CJK ideographs
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Supplementary Ideographic Plane
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Other Planes

● Planes 0x03 – 0x0D unused

● Plane 0x0E contains special tags and
variation selectors

● Planes 0x0F and 0x10 for private use only



GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Character Encoding

● ASCII
● UCS-2 (Universal Coded Character Set)

● Always 16 bits per character
● UTF-16

● 16 bits or 32 bits per character
● UTF-32

● Always 32 bits per character
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UTF-8

● 1 – 4 bytes per character
● Using variable-length encoding

● Values 0x00 – 0x7F identical to ASCII

● High bit set indicates part of
multi-byte sequence
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UTF-8

● 1 byte: 0x00 – 0x7F
● 2 bytes: 0x0080 – 0x07FF
● 3 bytes: 0x0800 – 0xFFFF
● 4 bytes: 0x010000 – 0x10FFFF
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Glyphs

● Fonts contain glyphs

● Glyphs have font-specific internal numbering

● Fonts contain tables that map character codes 
(Unicode values) to glyph indexes
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Glyphs

● Fonts typically contain many more glyphs that 
are not directly mapped from characters
● Type variations
● Alternate styles
● Ligatures, ZWJ sequences
● Initial, medial, final forms (Arabic)

● More about these later
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TrueType

● Contains resolution-independent 
representations of glyph outlines

● Has character-to-glyph mappings

● Usually contains several other tables with 
typographic information (e.g., kerning)
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Glyph Outline

● Glyph defined by one or more closed contours

● Each contour defined by continuous sequence 
of quadratic Bézier curves

● Winding number determines whether a given 
point is inside the glyph
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Winding Number

● Contours defining outer edge of glyph wound 
in one direction (either CW or CCW is okay)

● Contours defining a hole in the glyph wound in 
the opposite direction
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Winding Number

● Count number of positive loops for
outer contours

● Subtract number of negative loops for
inner contours

● Nonzero means point inside glyph boundary
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Glyph Outline / Winding Number

01 1 00
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Font Rendering in Games

● Text rendered in lots of places
● GUI: Buttons, menus, ...
● HUD: Score, health, ammo, ...
● In scene: Signs, labels, computer screens, ...
● Debug info: Console, stats, timings, ...
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Basic GPU Font Rendering

● Rasterize each glyph on CPU and store
results in a texture map called an “atlas”

● Can be done for multiple font sizes at once

● Packing methods can vary in sophistication
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Font Atlases

Image credit: freetype-gl
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Font Atlases

● Render one quad for each glyph

● Texture map the glyph’s image from the atlas

● Very simple and stupid fast
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Font Atlases

● Very limited quality
● Only looks good at originally rendered size
● Magnification looks terrible
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Font Atlases

● Minification also problematic

● Mipmaps work to a degree

● Glyphs must be surrounded by empty space in 
atlas to prevent bleeding into neighbors
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Signed Distance Fields

● Instead of storing glyph
images in atlas, store
distance to glyph outline
at each point

Image credit: Konstantin Käfer, 
“Drawing Text with Signed Distance 
Fields in Mapbox GL”, 2014.
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Signed Distance Fields

● Render linear coverage by scaling distance
to pixel units and clamping

● Requires derivatives in pixel shader
and extra computation

● Still very fast
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Signed Distance Fields

● Addresses magnification problem
● Also allows good perspective rendering

Image credit: Chris Green, “Improved 
Alpha-Tested Magnification for Vector 
Textures and Special Effects”, 2007.
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Signed Distance Fields

● Need high resolution to capture glyph details

● Sharp corners always rounded off
● Can be addressed with multiple distance channels

● Minification becomes bigger problem
● Because one distance value can’t account for 

multiple curves in scaled-down field
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Signed Distance Fields

Image credit: David Rosen, “High-quality 
text rendering”, 2013.
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Resolution Independence

● Render directly from original outline data
● Control points for quadratic Bézier curves

● No more texture atlases!
● No resolution-dependent approximation
● Impossible to lose detail
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Loop-Blinn Method

● Creates a triangulation for each glyph
using its outline control points

● Each triangle corresponds to one Bézier curve

● Simple calculation based on interpolated 
texture coordinates yields inside/outside state
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Loop-Blinn Method

Image credit: Charles Loop and Jim Blinn, 
“Resolution Independent Curve Rendering using 
Programmable Graphics Hardware”, 2005.
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Loop-Blinn Method

● Needs further subdivision for interior triangles 
so they never border more than one curve

● Correct antialiasing also requires more 
triangles in the exterior
● Consider a pixel intersecting the outline but

without its center covered by a triangle
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Loop-Blinn Method

Image credit: Charles Loop and Jim Blinn, 
“Resolution Independent Curve Rendering using 
Programmable Graphics Hardware”, 2005.
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Loop-Blinn Method

● Requires a large number of triangles
for each glyph

● More complex glyphs could require 1000s!

● Calculation of triangles is complex
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Loop-Blinn Method

● Produces high-quality magnification

● However, minification is poor
● Any pixel is covered by at most one triangle
● Each triangle corresponds to only one curve
● Thus, it’s impossible for one pixel to consider 

contribution from multiple nearby curves
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Dobbie Method

● Covers each glyph with a single quad

● Pixel shader considers subset of all Bézier 
curves to determine winding number

● Basically ray tracing glyphs
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Dobbie Method

● For a given point, shoot a ray outward
and count curve intersections

● An intersection makes a positive or negative 
contribution based on its winding direction

● Nonzero total means inside glyph boundary
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Dobbie Method

● Antialiasing possible along ray direction

● If intersection occurs within pixel,
it makes a fractional contribution

● Test rays in multiple directions and average
to get isotropic antialiasing
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Dobbie Method
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Dobbie Method

● Very slow to test all Bézier curves defining
the glyph for each ray

● Dobbie method divides glyph’s bounding
box into cells

● Each cell has list of intersecting curves
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Dobbie Method

Image credit: Will Dobbie, “GPU text rendering with 
vector textures”, 2016.
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Dobbie Method

● Pixel footprint could overlap multiple cells
● Have to sort that out in pixel shader

● Need to precompute whether cell center inside 
or outside glyph boundary
● Then trace extra ray from pixel location to cell 

center to fix up winding number
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Dobbie Method

● There’s a serious problem:

● Numerical robustness

● Floating-point round-off error causes
rendering artifacts



GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Dobbie Method

Sparkle / streaking
artifacts
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Glyphy

● Similar to Dobbie method in that a glyph
is covered by a single quad

● Pixel shader determines distance to
nearest Bézier curve
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Glyphy

● Original outlines not preserved

● Also has numerical robustness problems
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Glyphy
Straight lines 
rounded

Sparkle
artifacts
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Slug Library

● The result of my own research begun in 2016

● Uses one quad per glyph

● Calculates winding number in pixel shader

● Has perfect numerical robustness
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Numerical Robustness

● Round-off errors in previous methods:
● Generally come from determining whether roots

of ray-curve intersections fall in [0,1] range
● Problems typically occur at the endpoints
● Especially bad when ray nearly tangent to curve
● Hacks like using epsilons or perturbing coordinates 

just shift the problem cases around
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Numerical Robustness

● Only way to solve is to completely eliminate  
the [0,1] range test

● Slug introduces an equivalence class algorithm
● Equivalence class represents control point state
● Same actions taken for all cases in same class
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Equivalence Classes

● With respect to a given ray, a particular 
quadratic Bézier curve is classified into one
of 8 possible equivalence classes

● Based on which side of ray each of three 
control points falls, positive or negative
● Exactly on ray is considered positive
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Equivalence Classes

● For each Bézier curve, always calculate roots

( ) ( )2
1 2 3 1 2 12 2y y y t y y t y− + − − +

2 2

1 2   and   b b ac b b act t
a a

− − + −
= =

1 2 32a y y y= − + 1 2b y y= − 1c y=
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Equivalence Classes

● A 16-bit LUT tells us what to do with roots for 
each equivalence class (8 classes x 2 roots)

● Action taken only when x coordinate positive
at a root, meaning intersection was on ray
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Winding Number

● 1 in LUT for first root means add one
● 1 in LUT for second root means subtract one

● Total after considering all curves is
winding number at pixel location

● Fractional values used when roots within
pixel distance of ray origin
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Antialiasing

● Result is coverage value with perfect
one-dimensional antialiasing

● Evaluate horizontal and vertical rays

● Combine to produce 2D antialiasing
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Banding

● For best performance, we want to minimize 
number of curves tested

● Cells don’t work well
● Pixel footprint can cover multiple cells
● Pixels get larger as font size decreases
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Banding

● Instead of cells, use horizontal and vertical 
bands that extend to infinity
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Banding

● Bézier curves are sorted into the bands
● A curve can belong to multiple bands
● When rendering, band selected based on ray origin

● Doesn’t matter how large pixel footprints get
● Only matters in ray direction
● Band parallel to ray extends forever
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Banding

● Curves in each band are sorted to allow early 
exit in pixel shader

● Once right-pointing ray’s origin is beyond 
maximum curve x coordinate, we’re done
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Banding

● Curves sorted in both directions

● Ray points left or right depending on pixel 
position within a band

● Reduces number of curves tested
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Banding

● We want worst-case band to contain
fewest curves possible

● GPU thread coherence will make shader wait 
for longest number of loop iterations in a group 
of pixels (32 or 64)
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Banding

● Use large number
of bands

● Merge those with
equal subsets of
Bézier curves
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Minification

● High-quality minification achieved with 
adaptive supersampling
● Based on screen-space derivatives

● Already have perfect 1D antialiasing
● Take n samples in x and y directions
● Produces better than n x n supersampling
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Minification
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Font Data

● Two texture maps, data only (no images)

● Curve texture, 4 x 16-bit float
● Contains all Bézier curves

● Band texture, 4 x 16-bit integer
● Contains curve subsets for all bands
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Multicolor Glyphs

● Microsoft fonts use vector data for color emoji

● Layered glyphs with color palette

● Easy to handle with loop in pixel shader
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Typography

● Slug algorithm can make individual glyphs look 
great at any scale or from any perspective

● Higher-level:
Make entire lines of text look good
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Metrics

advance width

bounding box

(0,0)

(1,1)

y

x

em square

A
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Metrics
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Kerning

● Some pairs of glyphs appear to the eye
to have too much space in between

● Fonts usually contain kerning tables to
improve overall appearance
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Kerning

“Too Wavy.”
“Too Wavy.”

Kerning off

Kerning on
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Ligatures

● Replaces a sequence of glyphs with one
new glyph that looks better

● In some languages, ligatures that change 
appearance are required for correctness
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Ligatures

Normal text

With ligatures
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ZWJ Sequences

● Unicode has control character
“zero-width joiner” (ZWJ)

● Often used by fonts for combining several 
glyphs into single ligature
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ZWJ Sequences

ZWJ
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Combining Marks

● Unicode defines many accents and other 
symbols that are designed to combine with
a preceding base character

● Fonts determine how this combination works 
by defining attachment points
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Combining Marks

a ă ̥̆ ̥
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Alternate Substitution

● OpenType fonts define a large array of 
substitution features

● Independent of Unicode

● Not directly accessible through characters
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Alternate Substitution

● Small caps
● Subscripts and superscripts
● Case-sensitive forms
● Stylistic alternates
● Tabular and proportional figures
● Lining and old-style figures
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Small Caps

Small caps alternates

Scaled glyphs
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Lining and Old-style Figures
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Cursive Joining

● In languages like Arabic, letters have multiple 
forms depending on position in word

● Isolated, initial, medial, final forms

● Do not have separate character codes
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Cursive Joining
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Materials

● Rendering glyphs outputs coverage value
● (Plus color for multi-color emoji)

● Can be combined with other materials in game
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Materials
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Contact / More Info

● lengyel@terathon.com

● Twitter: @EricLengyel

● sluglibrary.com
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