
GPU Font Rendering
Current State of the Art

Eric Lengyel, Ph.D.
Terathon Software

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

About the speaker

● Working in game/graphics dev since 1994
● Previously at Sierra, Apple, Naughty Dog

● Current projects:
● Slug Library, C4 Engine, The 31st, FGED

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

About this talk

● Unicode
● Glyphs
● TrueType
● Font Rendering
● Typography

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Unicode

● Defines character codes
● Originally 16-bit
● Now has range 0x000000 – 0x10FFFF
● Divided into 17 “planes”

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Basic Multilingual Plane

● 0x0000 – 0xFFFF
● First 128 code points are ASCII
● Lots of other common scripts/languages
● Lots of common symbols

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Basic Multilingual Plane

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Supplementary Multilingual Plane

● 0x010000 – 0x01FFFF
● Rare characters from many languages
● Rare scripts like Cuneiform and Hieroglyphs
● Mathematical symbols and bold / italic
● Emoticons

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Supplementary Multilingual Plane

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Supplementary Ideographic Plane

● 0x020000 – 0x02FFFF
● Less common CJK ideographs

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Supplementary Ideographic Plane

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Other Planes

● Planes 0x03 – 0x0D unused

● Plane 0x0E contains special tags and
variation selectors

● Planes 0x0F and 0x10 for private use only

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Character Encoding

● ASCII
● UCS-2 (Universal Coded Character Set)

● Always 16 bits per character
● UTF-16

● 16 bits or 32 bits per character
● UTF-32

● Always 32 bits per character

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

UTF-8

● 1 – 4 bytes per character
● Using variable-length encoding

● Values 0x00 – 0x7F identical to ASCII

● High bit set indicates part of
multi-byte sequence

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

UTF-8

● 1 byte: 0x00 – 0x7F
● 2 bytes: 0x0080 – 0x07FF
● 3 bytes: 0x0800 – 0xFFFF
● 4 bytes: 0x010000 – 0x10FFFF

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Glyphs

● Fonts contain glyphs

● Glyphs have font-specific internal numbering

● Fonts contain tables that map character codes
(Unicode values) to glyph indexes

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Glyphs

● Fonts typically contain many more glyphs that
are not directly mapped from characters
● Type variations
● Alternate styles
● Ligatures, ZWJ sequences
● Initial, medial, final forms (Arabic)

● More about these later

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

TrueType

● Contains resolution-independent
representations of glyph outlines

● Has character-to-glyph mappings

● Usually contains several other tables with
typographic information (e.g., kerning)

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Glyph Outline

● Glyph defined by one or more closed contours

● Each contour defined by continuous sequence
of quadratic Bézier curves

● Winding number determines whether a given
point is inside the glyph

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Winding Number

● Contours defining outer edge of glyph wound
in one direction (either CW or CCW is okay)

● Contours defining a hole in the glyph wound in
the opposite direction

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Winding Number

● Count number of positive loops for
outer contours

● Subtract number of negative loops for
inner contours

● Nonzero means point inside glyph boundary

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Glyph Outline / Winding Number

01 1 00

01

1

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Font Rendering in Games

● Text rendered in lots of places
● GUI: Buttons, menus, ...
● HUD: Score, health, ammo, ...
● In scene: Signs, labels, computer screens, ...
● Debug info: Console, stats, timings, ...

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Basic GPU Font Rendering

● Rasterize each glyph on CPU and store
results in a texture map called an “atlas”

● Can be done for multiple font sizes at once

● Packing methods can vary in sophistication

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Font Atlases

Image credit: freetype-gl

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Font Atlases

● Render one quad for each glyph

● Texture map the glyph’s image from the atlas

● Very simple and stupid fast

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Font Atlases

● Very limited quality
● Only looks good at originally rendered size
● Magnification looks terrible

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Font Atlases

● Minification also problematic

● Mipmaps work to a degree

● Glyphs must be surrounded by empty space in
atlas to prevent bleeding into neighbors

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Signed Distance Fields

● Instead of storing glyph
images in atlas, store
distance to glyph outline
at each point

Image credit: Konstantin Käfer,
“Drawing Text with Signed Distance
Fields in Mapbox GL”, 2014.

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Signed Distance Fields

● Render linear coverage by scaling distance
to pixel units and clamping

● Requires derivatives in pixel shader
and extra computation

● Still very fast

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Signed Distance Fields

● Addresses magnification problem
● Also allows good perspective rendering

Image credit: Chris Green, “Improved
Alpha-Tested Magnification for Vector
Textures and Special Effects”, 2007.

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Signed Distance Fields

● Need high resolution to capture glyph details

● Sharp corners always rounded off
● Can be addressed with multiple distance channels

● Minification becomes bigger problem
● Because one distance value can’t account for

multiple curves in scaled-down field

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Signed Distance Fields

Image credit: David Rosen, “High-quality
text rendering”, 2013.

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Resolution Independence

● Render directly from original outline data
● Control points for quadratic Bézier curves

● No more texture atlases!
● No resolution-dependent approximation
● Impossible to lose detail

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Loop-Blinn Method

● Creates a triangulation for each glyph
using its outline control points

● Each triangle corresponds to one Bézier curve

● Simple calculation based on interpolated
texture coordinates yields inside/outside state

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Loop-Blinn Method

Image credit: Charles Loop and Jim Blinn,
“Resolution Independent Curve Rendering using
Programmable Graphics Hardware”, 2005.

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Loop-Blinn Method

● Needs further subdivision for interior triangles
so they never border more than one curve

● Correct antialiasing also requires more
triangles in the exterior
● Consider a pixel intersecting the outline but

without its center covered by a triangle

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Loop-Blinn Method

Image credit: Charles Loop and Jim Blinn,
“Resolution Independent Curve Rendering using
Programmable Graphics Hardware”, 2005.

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Loop-Blinn Method

● Requires a large number of triangles
for each glyph

● More complex glyphs could require 1000s!

● Calculation of triangles is complex

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Loop-Blinn Method

● Produces high-quality magnification

● However, minification is poor
● Any pixel is covered by at most one triangle
● Each triangle corresponds to only one curve
● Thus, it’s impossible for one pixel to consider

contribution from multiple nearby curves

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Dobbie Method

● Covers each glyph with a single quad

● Pixel shader considers subset of all Bézier
curves to determine winding number

● Basically ray tracing glyphs

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Dobbie Method

● For a given point, shoot a ray outward
and count curve intersections

● An intersection makes a positive or negative
contribution based on its winding direction

● Nonzero total means inside glyph boundary

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Dobbie Method

● Antialiasing possible along ray direction

● If intersection occurs within pixel,
it makes a fractional contribution

● Test rays in multiple directions and average
to get isotropic antialiasing

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Dobbie Method

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Dobbie Method

● Very slow to test all Bézier curves defining
the glyph for each ray

● Dobbie method divides glyph’s bounding
box into cells

● Each cell has list of intersecting curves

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Dobbie Method

Image credit: Will Dobbie, “GPU text rendering with
vector textures”, 2016.

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Dobbie Method

● Pixel footprint could overlap multiple cells
● Have to sort that out in pixel shader

● Need to precompute whether cell center inside
or outside glyph boundary
● Then trace extra ray from pixel location to cell

center to fix up winding number

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Dobbie Method

● There’s a serious problem:

● Numerical robustness

● Floating-point round-off error causes
rendering artifacts

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Dobbie Method

Sparkle / streaking
artifacts

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Glyphy

● Similar to Dobbie method in that a glyph
is covered by a single quad

● Pixel shader determines distance to
nearest Bézier curve

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Glyphy

● Original outlines not preserved

● Also has numerical robustness problems

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Glyphy
Straight lines
rounded

Sparkle
artifacts

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Slug Library

● The result of my own research begun in 2016

● Uses one quad per glyph

● Calculates winding number in pixel shader

● Has perfect numerical robustness

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Numerical Robustness

● Round-off errors in previous methods:
● Generally come from determining whether roots

of ray-curve intersections fall in [0,1] range
● Problems typically occur at the endpoints
● Especially bad when ray nearly tangent to curve
● Hacks like using epsilons or perturbing coordinates

just shift the problem cases around

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Numerical Robustness

● Only way to solve is to completely eliminate
the [0,1] range test

● Slug introduces an equivalence class algorithm
● Equivalence class represents control point state
● Same actions taken for all cases in same class

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Equivalence Classes

● With respect to a given ray, a particular
quadratic Bézier curve is classified into one
of 8 possible equivalence classes

● Based on which side of ray each of three
control points falls, positive or negative
● Exactly on ray is considered positive

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Equivalence Classes
x

y

x

y

x

y

x

y

1p 1p 1p1p

2p

2p

2p

2p

3p 3p

3p
3p

‒ ‒ ‒ ‒

x

y

x

y

x

y

x

y

1p
1p

1p 1p

2p 2p 2p2p

3p

3p 3p

3p

+ ‒ + ‒ + ‒ + ‒

x

y

x

y

‒ ‒

1p 2p 1p 2p

3p

3p
x

y

x

y

+ +

1p

1p

2p2p

3p 3p

x

y

x

y

+ +

1p

1p

2p
2p

3p 3p

1p

2p

3p

x

y

±

‒ +

1p
1p

2p

2p

3p
3p

x

y

x

y

+ +

1p

1p

2p 2p3p 3p

x

y

x

y

x

y

x

y

x

y

x

y

1p 1p

1p1p

2p

2p

2p

3p 3p 2p 3p3p

1p

1p
2p

2p 2p

2p3p 1p

1p

3p 3p3p

x

y

x

y

x

y

x

y

A B

C

D E F

G H

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Equivalence Classes

● For each Bézier curve, always calculate roots

() ()2
1 2 3 1 2 12 2y y y t y y t y− + − − +

2 2

1 2 and b b ac b b act t
a a

− − + −
= =

1 2 32a y y y= − + 1 2b y y= − 1c y=

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Equivalence Classes

● A 16-bit LUT tells us what to do with roots for
each equivalence class (8 classes x 2 roots)

● Action taken only when x coordinate positive
at a root, meaning intersection was on ray

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Winding Number

● 1 in LUT for first root means add one
● 1 in LUT for second root means subtract one

● Total after considering all curves is
winding number at pixel location

● Fractional values used when roots within
pixel distance of ray origin

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Antialiasing

● Result is coverage value with perfect
one-dimensional antialiasing

● Evaluate horizontal and vertical rays

● Combine to produce 2D antialiasing

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Banding

● For best performance, we want to minimize
number of curves tested

● Cells don’t work well
● Pixel footprint can cover multiple cells
● Pixels get larger as font size decreases

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Banding

● Instead of cells, use horizontal and vertical
bands that extend to infinity

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Banding

● Bézier curves are sorted into the bands
● A curve can belong to multiple bands
● When rendering, band selected based on ray origin

● Doesn’t matter how large pixel footprints get
● Only matters in ray direction
● Band parallel to ray extends forever

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Banding

● Curves in each band are sorted to allow early
exit in pixel shader

● Once right-pointing ray’s origin is beyond
maximum curve x coordinate, we’re done

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Banding

● Curves sorted in both directions

● Ray points left or right depending on pixel
position within a band

● Reduces number of curves tested

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Banding

● We want worst-case band to contain
fewest curves possible

● GPU thread coherence will make shader wait
for longest number of loop iterations in a group
of pixels (32 or 64)

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Banding

● Use large number
of bands

● Merge those with
equal subsets of
Bézier curves

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Minification

● High-quality minification achieved with
adaptive supersampling
● Based on screen-space derivatives

● Already have perfect 1D antialiasing
● Take n samples in x and y directions
● Produces better than n x n supersampling

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Minification

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Font Data

● Two texture maps, data only (no images)

● Curve texture, 4 x 16-bit float
● Contains all Bézier curves

● Band texture, 4 x 16-bit integer
● Contains curve subsets for all bands

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Multicolor Glyphs

● Microsoft fonts use vector data for color emoji

● Layered glyphs with color palette

● Easy to handle with loop in pixel shader

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Typography

● Slug algorithm can make individual glyphs look
great at any scale or from any perspective

● Higher-level:
Make entire lines of text look good

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Metrics

advance width

bounding box

(0,0)

(1,1)

y

x

em square

A

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Metrics

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Kerning

● Some pairs of glyphs appear to the eye
to have too much space in between

● Fonts usually contain kerning tables to
improve overall appearance

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Kerning

“Too Wavy.”
“Too Wavy.”

Kerning off

Kerning on

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Ligatures

● Replaces a sequence of glyphs with one
new glyph that looks better

● In some languages, ligatures that change
appearance are required for correctness

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Ligatures

Normal text

With ligatures

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

ZWJ Sequences

● Unicode has control character
“zero-width joiner” (ZWJ)

● Often used by fonts for combining several
glyphs into single ligature

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

ZWJ Sequences

ZWJ

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Combining Marks

● Unicode defines many accents and other
symbols that are designed to combine with
a preceding base character

● Fonts determine how this combination works
by defining attachment points

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Combining Marks

a ă ̥̆ ̥

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Alternate Substitution

● OpenType fonts define a large array of
substitution features

● Independent of Unicode

● Not directly accessible through characters

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Alternate Substitution

● Small caps
● Subscripts and superscripts
● Case-sensitive forms
● Stylistic alternates
● Tabular and proportional figures
● Lining and old-style figures

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Small Caps

Small caps alternates

Scaled glyphs

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Lining and Old-style Figures

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Cursive Joining

● In languages like Arabic, letters have multiple
forms depending on position in word

● Isolated, initial, medial, final forms

● Do not have separate character codes

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Cursive Joining

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Materials

● Rendering glyphs outputs coverage value
● (Plus color for multi-color emoji)

● Can be combined with other materials in game

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Materials

GPU Font Rendering: Current State of the Art May 7, 2018
Irvine, California

Contact / More Info

● lengyel@terathon.com

● Twitter: @EricLengyel

● sluglibrary.com

	�GPU Font Rendering��Current State of the Art�����Eric Lengyel, Ph.D.�Terathon Software
	About the speaker
	About this talk
	Unicode
	Basic Multilingual Plane
	Basic Multilingual Plane�
	Supplementary Multilingual Plane
	Supplementary Multilingual Plane
	Supplementary Ideographic Plane
	Supplementary Ideographic Plane
	Other Planes
	Character Encoding
	UTF-8
	UTF-8
	Glyphs
	Glyphs
	TrueType
	Glyph Outline
	Winding Number
	Winding Number
	Glyph Outline / Winding Number
	Font Rendering in Games
	Slide Number 23
	Basic GPU Font Rendering
	Font Atlases
	Font Atlases
	Font Atlases
	Font Atlases
	Signed Distance Fields
	Signed Distance Fields
	Signed Distance Fields
	Signed Distance Fields
	Signed Distance Fields
	Resolution Independence
	Loop-Blinn Method
	Loop-Blinn Method
	Loop-Blinn Method
	Loop-Blinn Method
	Loop-Blinn Method
	Loop-Blinn Method
	Dobbie Method
	Dobbie Method
	Dobbie Method
	Dobbie Method
	Dobbie Method
	Dobbie Method
	Dobbie Method
	Dobbie Method
	Dobbie Method
	Glyphy
	Glyphy
	Glyphy
	Slide Number 53
	Slug Library
	Numerical Robustness
	Numerical Robustness
	Equivalence Classes
	Equivalence Classes
	Equivalence Classes
	Equivalence Classes
	Winding Number
	Antialiasing
	Banding
	Banding
	Banding
	Banding
	Banding
	Banding
	Banding
	Minification
	Minification
	Font Data
	Multicolor Glyphs
	Typography
	Metrics
	Metrics
	Kerning
	Kerning
	Ligatures
	Ligatures
	ZWJ Sequences
	ZWJ Sequences
	Combining Marks
	Combining Marks
	Alternate Substitution
	Alternate Substitution
	Small Caps
	Lining and Old-style Figures
	Cursive Joining
	Cursive Joining
	Materials
	Materials
	Contact / More Info

