
Advanced Light and Shadow 
Culling Methods

Eric Lengyel



Fully Dynamic Environment

 Anything in the world can move
— Can’t precompute any visibility 

information

 Lights completely dynamic
— Can’t precompute any lighting 

information
— Shadows also completely dynamic



Problems to Be Solved at 
Run-time
 Determine the set of objects 

visible to the camera
 Determine the set of lights that 

can influence any region of space 
visible to the camera

 For each light, also determine 
what subset of the visible objects 
are illuminated by the light



Problems to Be Solved at 
Run-time

 Determine the set of objects that 
could possibly cast shadows into 
the region of space visible to the 
camera
— For each light, this is a superset of 

the set of the illuminated objects 
that are visible to the camera



Sets of Objects

 Visible set
 Illuminated set (x n lights)
 Shadow-casting set (x n lights)

Visible
Illumi-
nated

Shadow-
casting



Visibility Determination

 Organize the world in some way
— Tree structures (BSP, octree, etc.)
— Hierarchical bounding volumes
— Portal system

 A combination of these can work 
extremely well

 Portals fine outdoors as well



Portal Systems

 World divided into zones
— A zone is the region of space 

bounded by a convex polyhedron

 Zones are connected by portals
— A portal is a planar convex polygon
— From the front side, a portal’s 

vertices are wound CCW



Portal Systems

 During visibility determination, 
only have to worry about zones 
that can be seen through a 
sequence of portals

 For each reachable zone, there is 
a convex region of space visible 
to the camera



Portal Systems

Camera



Portal Systems

 The visible regions form a tree 
structure

 The region in the zone containing 
the camera is the root of the tree

 Zones seen through n portals
have regions at the n-th level in 
the tree



Portal Systems

Camera

A
B

C
D A

B C

D



Regions

 We define a region to be a convex 
volume of space bounded by:
— At most one front plane
— At most one back plane
— Any number of lateral planes

 Plane normals point inward



Regions

Front plane

Back plane

Lateral planes



Regions

 Entrance portal determines the 
front plane

 Back plane determined by zone 
boundary

 Lateral planes determined by 
extrusion of clipped portal



Regions

Front plane

Back plane

Lateral planes



Building the Region Tree

 Start with the zone containing
the camera

 Then, recursively do...
— Check portals leading out of current 

zone for visibility
— Clip any visible portals to the 

bounding planes of the current 
region



Portal Visibility

 First calculate dot product d
between camera view direction V 
and portal plane normal N

 Define θ to be half of the 
diagonal field of view

 If d ≥ sin θ, then portal can’t be 
visible



Portal Visibility

θ

α

β 

V

N

d = V ⋅ N = cos β = sin α 

Half of diagonal
field of view

Portal only visible if
sin α < sin θ 



Portal Visibility

 After field-of-view test...
— Test portal bounding volume
— If bounding volume visible, then clip 

portal polygon to region planes
— n-sided portal clipped against m

planes can have n+m vertices



Visible Object Set

 After region tree has been built...
— Traverse the tree
— Collect objects in each zone that 

intersect the visible regions 
corresponding to the zone
 Use any frustum/bounding volume test, 

but test against region’s planes

— This is the visible object set



Region Classification

 Three types of region
— “Camera region” refers to a region 

of space visible to the camera
— “Light region” refers to a region of 

space reachable from a light source
— “Shadow region” refers to a region 

of space from which shadows may 
extend into a camera region



Light Region Trees

 Portals can be used to construct 
illumination trees
— Similar to the visibility tree 

constructed for the camera
— One tree for each light source

 Only recalculated when light moves

— Each node in the tree corresponds 
to a convex region of space



Light Region Trees

 Three fundamental light types
— Point light
— Spot light, special case of point light
— Infinite (directional) light



Light Region Trees

 Point light
— Omnidirectional
— Has maximum range
— Root illumination region bounded 

only be zone boundary and light’s 
bounding sphere



Point Light Tree

A
B

C

D

B

A D

C



Spot Light Tree

 Spot light almost same
as point light
— Difference is the root node of the 

illumination tree
— Spot light starts with a frustum,

just like a camera does
— Point light affects entire root zone



Area/Wiggle Lights

— Lateral planes need to be
adjusted for area lights

— Same adjustment can be
used to optimize ‘wiggle’
lights that can move
within a small volume by
removing need to
recalculate regions



Area/Wiggle Lights

— Normally, a lateral plane
is calculated using the
portal edge V1V2 and
the light position L

— Adjust for sphere of
radius r by using the
point L + sN

d 

r
s

e 

s =
rd
e 

L

N

V1,V2



Infinite Light Tree

 Light rays parallel
for infinite light
— The lateral planes of each 

illumination region intersect at 
parallel lines

— The extrusion of planes from a 
portal always goes in one direction 
instead of away from a point



Visible Light Determination

 Each zone keeps a linked list
of light regions
— One or more region nodes for each 

light that can shine into the zone
— Each light region knows which light 

generated it



Visible Light Determination

A B

C D

Light 1
Light 2

Light 3

For example, 
consider zone C



Visible Light Determination

B

A D

C

A

B C

D

D

C B

A

Light 1 Light 2 Light 3



Visible Light Determination

 For any given zone, we can walk 
the linked list of light regions and 
collect unique lights

 Repeat process for all zones 
referenced in the camera’s 
visibility tree

 We now have the set of
visible lights



Illuminated Object Set

 Given one visible zone and one 
visible light shining into that 
zone…
— Illuminated objects are those which 

intersect both a camera region and a 
light region



Illuminated Object Set

Light

Camera



Illuminated Object Set

 Objects are often only partially 
within an illumination region
— Lighting the whole object wastes 

rendering time due to extra fill
— Fortunately, hardware provides an 

opportunity for optimization



Lighting Optimization

 Use hardware scissor rectangle
— Calculate intersections of camera 

regions and light regions
— Camera-space bounding box 

determines scissor rectangle

 GL_EXT_depth_bounds_test
— Works like a z axis for scissor box, 

but a little different



Lighting Optimization

Camera

Image Plane

Max Depth

Min Depth



Lighting Optimization

 Scissor rectangle and
depth bounds test
— Limits rendering for a single light to 

the maximal visible extents
— Can also be applied to stencil 

shadow volumes



Scissor and Depth Bounds

Camera

Scissor Rectangle

Depth
Bounds

Image Plane



Scissor and Depth Bounds

Camera

Scissor

Depth
Bounds

Image Plane



Depth Bounds Test

 Let P be the projection matrix 
and let [dmin, dmax] be the depth 
range

 Viewport depth d corresponding 
to camera space z is given by

max min 33 34 max min

43 442 2
d d P z P d dd

P z P
− + + 

= + + 



Shadow-Casting Object Set

 All objects in the illuminated set 
are also in the shadow-casting set
— But an object doesn’t have to be 

visible to be casting a shadow into 
one of the visible camera regions

— The shadow-casting set is a superset 
of the illuminated set



Shadow-Casting Object Set

 Need to find objects between 
visible regions and light source

 We already have a structure in 
place to make this easy

 From a visible light region, walk 
up the light’s illumination tree to 
the root



Shadow-Casting Object Set

Camera

Light

A B C

D E

C

E B

A



Shadow Region

 Objects that can cast shadows 
into a visible camera region must:
1) Lie in the camera region itself, or
2) Lie in between the camera region 

and the light position

 The shadow region is the convex 
hull containing the camera region 
and the light position



Shadow Region

Camera

Light

A B C

D E

Culled
Caster



Shadow-Casting Object Set

 Collect objects in branch of 
illumination tree connecting 
visible camera region and
light source

 But reject objects that don’t 
intersect the shadow region AND 
their corresponding light region



Shadow Region
Culled
Caster

Camera

Light



Shadow Region

Light

Camera
Region

Shadow
Region



Shadow Region

 Calculate dot product of each 
bounding plane of the camera 
region and the light position

 If positive, then the plane also 
bounds the shadow region

 Other shadow region bounding 
planes determined by camera 
region’s silhouette



Shadow Region

LightSilhouette
Edge

Silhouette
Edge



Shadow Region

 Lateral planes of camera region 
are wound CCW

 If two consecutive planes Pi and 
Pi+1 have opposite-sign dot 
products with the light position L, 
then the edge between them is 
part of the silhouette



Shadow Region

— If Pi ⋅ L > 0 and Pi+1 ⋅ L ≤ 0, then edge 
E should point away from camera

— If Pi ⋅ L ≤ 0 and Pi+1 ⋅ L > 0, then edge 
E should point toward camera

— Bounding plane normal given by
(L − V) × E, where V is either edge 
endpoint



Shadow Region
Light



Shadow Region

 Also need to check edges 
between lateral planes and 
front/back planes

 Remember, vertices of front and 
back planes are wound CCW

 Adding a dummy front plane can 
help in cases of sharp point



Shadow Region
Unculled
Caster

Camera



Shadow Region
Culled
Caster

Camera



Shadow-Casting Object Set

 What if multiple light regions 
intersect the camera region?

 What if one light region intersects 
multiple camera regions?



Multiple Light Regions for 
One Camera Region

Light

Camera



Multiple Light Regions for 
One Camera Region

 The shadow region only depends 
on the camera region that each 
light region intersects
— So the shadow region is the same

for any pairing of light source and 
camera region

— No need to take special action



Multiple Camera Regions for 
One Light Region

Light

Camera



Multiple Camera Regions for 
One Light Region

 A separate shadow region needs 
to be constructed for each 
camera region

 There will be some overlap, so 
collect objects into some kind of 
container before rendering



Demonstrations



Questions?

 lengyel@terathon.com

 Slides available at

https://terathon.com/


	Slide Number 1
	Advanced Light and Shadow Culling Methods
	Fully Dynamic Environment
	Problems to Be Solved at Run-time
	Problems to Be Solved at Run-time
	Sets of Objects
	Visibility Determination
	Portal Systems
	Portal Systems
	Portal Systems
	Portal Systems
	Portal Systems
	Regions
	Regions
	Regions
	Regions
	Building the Region Tree
	Portal Visibility
	Portal Visibility
	Portal Visibility
	Visible Object Set
	Region Classification
	Light Region Trees
	Light Region Trees
	Light Region Trees
	Point Light Tree
	Spot Light Tree
	Area/Wiggle Lights
	Area/Wiggle Lights
	Infinite Light Tree
	Visible Light Determination
	Visible Light Determination
	Visible Light Determination
	Visible Light Determination
	Illuminated Object Set
	Illuminated Object Set
	Illuminated Object Set
	Lighting Optimization
	Lighting Optimization
	Lighting Optimization
	Scissor and Depth Bounds
	Scissor and Depth Bounds
	Depth Bounds Test
	Shadow-Casting Object Set
	Shadow-Casting Object Set
	Shadow-Casting Object Set
	Shadow Region
	Shadow Region
	Shadow-Casting Object Set
	Shadow Region
	Shadow Region
	Shadow Region
	Shadow Region
	Shadow Region
	Shadow Region
	Shadow Region
	Shadow Region
	Shadow Region
	Shadow Region
	Shadow-Casting Object Set
	Multiple Light Regions for One Camera Region
	Multiple Light Regions for One Camera Region
	Multiple Camera Regions for One Light Region
	Multiple Camera Regions for One Light Region
	Demonstrations
	Questions?

