Outline

- Projection Matrix Internals
- Infinite Projection Matrix
- Depth Modification
- Oblique Near Clipping Plane

- Slides available at https://terathon.com/
From Camera to Screen

- Camera Space
- Homogeneous Clip Space
- Normalized Device Coordinates
- Viewport Coordinates

- Projection Matrix
- Perspective Divide
- Viewport Transform
Projection Matrix

- The 4×4 projection matrix is really just a linear transformation in homogeneous space.
- It doesn’t actually perform the projection, but just sets things up right for the next step.
- The projection occurs when you divide by w to get from homogenous coordinates to 3-space.
OpenGL projection matrix

- $n, f =$ distances to near, far planes
- $e = \text{focal length} = 1 / \tan(\text{FOV} / 2)$
- $a = \text{viewport height} / \text{width}$

$$\begin{bmatrix}
 e & 0 & 0 & 0 \\
 0 & e/a & 0 & 0 \\
 0 & 0 & -\frac{f + n}{f - n} & -\frac{2fn}{f - n} \\
 0 & 0 & -1 & 0
\end{bmatrix}$$
Infinite Projection Matrix

- Take limit as f goes to infinity

\[
\lim_{f \to \infty} \begin{bmatrix}
e & 0 & 0 & 0 \\
0 & e/a & 0 & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n} \\
0 & 0 & -1 & 0 \\
\end{bmatrix} = \begin{bmatrix}
e & 0 & 0 & 0 \\
0 & e/a & 0 & 0 \\
0 & 0 & -1 & -2n \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\]
Infinite Projection Matrix

- Directions are mapped to points on the infinitely distant far plane
- A direction is a 4D vector with $w = 0$ (and at least one nonzero x, y, z)
- Good for rendering sky objects
 - Skybox, sun, moon, stars
- Also good for rendering stencil shadow volume caps
Infinite Projection Matrix

- The important fact is that z and w are equal after transformation to clip space:

$$
\begin{bmatrix}
e & 0 & 0 & 0 \\
0 & e/a & 0 & 0 \\
0 & 0 & -1 & -2n \\
0 & 0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
0
\end{bmatrix}
=
\begin{bmatrix}
ex \\
(e/a)y \\
-z \\
-z
\end{bmatrix}
$$
Infinite Projection Matrix

- After perspective divide, the z coordinate should be exactly 1.0, meaning that the projected point is precisely on the far plane:

\[
\begin{bmatrix}
ex \\
(e/a)y \\
-z \\
-z
\end{bmatrix} \rightarrow \begin{bmatrix}
-ex/z \\
-ey/az \\
1
\end{bmatrix}
\]
Infinite Projection Matrix

- But there’s a problem...
- The hardware doesn’t actually perform the perspective divide immediately after applying the projection matrix
- Instead, the viewport transformation is applied to the \((x, y, z)\) coordinates first
Infinite Projection Matrix

- Ordinarily, z is mapped from the range $[-1, 1]$ in NDC to $[0, 1]$ in viewport space by multiplying by 0.5 and adding 0.5.

- This operation can result in a loss of precision in the lowest bits.

- Result is a depth slightly smaller than 1.0 or slightly bigger than 1.0.
Infinite Projection Matrix

- If the viewport-space z coordinate is slightly bigger than 1.0, then fragment culling occurs.
- The hardware thinks the fragments are beyond the far plane.
- Can be corrected by enabling GL_DEPTH_CLAMP_NV, but this is a vendor-specific solution.
Infinite Projection Matrix

- Universal solution is to modify projection matrix so that viewport-space z is always slightly less than 1.0 for points on the far plane:

$$
\begin{bmatrix}
 e & 0 & 0 & 0 \\
 0 & e/a & 0 & 0 \\
 0 & 0 & \varepsilon - 1 & (\varepsilon - 2)n \\
 0 & 0 & -1 & 0
\end{bmatrix}
$$
Infinite Projection Matrix

- This matrix still maps the near plane to -1, but the infinite far plane is now mapped to $1 - \varepsilon$

$$\begin{bmatrix} \varepsilon - 1 & (\varepsilon - 2)n & -n \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -n \\ n \end{bmatrix}$$

$$\begin{bmatrix} \varepsilon - 1 & (\varepsilon - 2)n & z \\ -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} z(\varepsilon - 1) \\ -z \end{bmatrix}$$
Infinite Projection Matrix

- Because we’re calculating $\varepsilon - 1$ and $\varepsilon - 2$, we need to choose

$$\varepsilon \geq 2^{-22} \approx 2.4 \times 10^{-7}$$

so that 32-bit floating-point precision limits aren’t exceeded
Depth Modification

Several methods exist for performing polygon offset

- Hardware support through glPolygonOffset
- Fiddle with glDepthRange
- Tweak the projection matrix
Depth Modification

- `glPolygonOffset` works well, but:
 - Can adversely affect hierarchical z culling performance
 - Not guaranteed to be consistent across different GPUs

- Adjusting depth range:
 - Reduces overall depth precision

- Both require extra state changes
Depth Modification

- NDC depth is given by a function of the lower-right 2×2 portion of the projection matrix:

\[
\begin{pmatrix}
-\frac{f + n}{f - n} & -\frac{2fn}{f - n} \\
-1 & 0
\end{pmatrix}
\begin{pmatrix}
z \\
1
\end{pmatrix}
= \begin{pmatrix}
-\frac{f + n}{f - n}z - \frac{2fn}{f - n} \\
-z
\end{pmatrix}
\]

\[
z_{\text{NDC}} = \frac{f + n}{f - n} + \frac{2fn}{z(f - n)}
\]
Depth Modification

- We can add a constant offset ε to the NDC depth as follows:

$$
\begin{pmatrix}
-\frac{f+n}{f-n} - \varepsilon & -\frac{2fn}{f-n} \\
-1 & 0
\end{pmatrix}
\begin{bmatrix}
z \\
1
\end{bmatrix}
=
\begin{pmatrix}
\left(-\frac{f+n}{f-n} - \varepsilon\right)z - \frac{2fn}{f-n} \\
-z
\end{pmatrix}
$$

$$
Z_{NDC} = \frac{f+n}{f-n} + \frac{2fn}{z(f-n)} + \varepsilon
$$
Depth Modification

- w-coordinate unaffected
- Thus, x and y coordinates unaffected
- z offset is constant in NDC
- But this is not constant in camera space
- For a given offset in camera space, the corresponding offset in NDC depends on the depth
Depth Modification

- What happens to a camera-space offset δ?

$$\begin{bmatrix}
\frac{f + n}{f - n} & -\frac{2fn}{f - n} \\
-1 & 0
\end{bmatrix}
\begin{bmatrix}
z + \delta
\end{bmatrix}
= \begin{bmatrix}
\frac{f + n}{f - n} (z + \delta) - \frac{2fn}{f - n} \\
-(z + \delta)
\end{bmatrix}$$

$$z_{NDC} = \frac{f + n}{f - n} + \frac{2fn}{z(f - n)} - \frac{2fn}{f - n} \left(\frac{\delta}{z(z + \delta)} \right)$$
Depth Modification

- NDC offset as a function of camera-space offset δ and camera-space z:

$$\varepsilon(\delta, z) = -\frac{2fn}{f-n}\left(\frac{\delta}{z(z+\delta)}\right)$$

- Remember, δ is positive for an offset toward camera
Depth Modification

- Need to make sure that ε is big enough to make a difference in a typical 24-bit integer z buffer
- NDC range of $[-1, 1]$ is divided into 2^{24} possible depth values
- So $|\varepsilon|$ should be at least $2/2^{24} = 2^{-23}$
Depth Modification

- But we’re adding ε to $(f + n)/(f - n)$, which is close to 1.0
- Not enough bits of precision in 32-bit float for this
- So in practice, it’s necessary to use

$$|\varepsilon| \geq 2^{-21} \approx 4.8 \times 10^{-7}$$
Oblique Near Clipping Plane

- It’s sometimes necessary to restrict rendering to one side of some arbitrary plane in a scene
- For example, mirrors and water surfaces
Oblique Near Clipping Plane

- Using an extra hardware clipping plane seems like the ideal solution
 - But some older hardware doesn’t support user clipping planes
 - Enabling a user clipping plane could require modifying your vertex programs
 - There’s a slight chance that a user clipping plane will slow down your fragment programs
Oblique Near Clipping Plane

- Extra clipping plane almost always redundant with near plane
- No need to clip against both planes
Oblique Near Clipping Plane

- We can modify the projection matrix so that the near plane is moved to an arbitrary location
- No user clipping plane required
- No redundancy
Oblique Near Clipping Plane

- In NDC, the near plane has coordinates \((0, 0, 1, 1)\)
Oblique Near Clipping Plane

- Planes are transformed from NDC to camera space by the transpose of the projection matrix.
- So the plane \((0, 0, 1, 1)\) becomes \(M_3 + M_4\), where \(M_i\) is the \(i\)-th row of the projection matrix.
- \(M_4\) must remain \((0, 0, -1, 0)\) so that perspective correction still works right.
Oblique Near Clipping Plane

- Let \(C = (C_x, C_y, C_z, C_w) \) be the camera-space plane that we want to clip against instead of the conventional near plane.

- We assume the camera is on the negative side of the plane, so \(C_w < 0 \).

- We must have \(C = M_3 + M_4 \), where \(M_4 = (0, 0, -1, 0) \).
Oblique Near Clipping Plane

- $M_3 = C - M_4 = (C_x, C_y, C_z + 1, C_w)$

$$M = \begin{bmatrix}
 e & 0 & 0 & 0 \\
 0 & e/a & 0 & 0 \\
 C_x & C_y & C_z +1 & C_w \\
 0 & 0 & -1 & 0
\end{bmatrix}$$

- This matrix maps points on the plane C to the $z = -1$ plane in NDC
Oblique Near Clipping Plane

- But what happens to the far plane?
- \(F = M_4 - M_3 = 2M_4 - C \)
- Near plane and far plane differ only in the \(z \) coordinate
- Thus, they must coincide where they intersect the \(z = 0 \) plane
Oblique Near Clipping Plane

- Far plane is completely hosed!
Oblique Near Clipping Plane

- Depths in NDC no longer represent distance from camera plane, but correspond to the position between the oblique near and far planes.
- We can minimize the effect, and in practice it’s not so bad.
Oblique Near Clipping Plane

- We still have a free parameter: the clipping plane C can be scaled.
- Scaling C has the effect of changing the orientation of the far plane F.
- We want to make the new view frustum as small as possible while still including the conventional view frustum.
Oblique Near Clipping Plane

- Let $F = 2M_4 - aC$
- Choose the point Q which lies furthest opposite the near plane in NDC:
 $$Q = M^{-1} \cdot (\text{sgn}(C_x), \text{sgn}(C_y), 1, 1)$$
- Solve for a such that Q lies in plane F (i.e., $F \cdot Q = 0$):
 $$a = \frac{2M_4 \cdot Q}{C \cdot Q}$$
Oblique Near Clipping Plane

- Near plane doesn’t move, but far plane becomes optimal
Oblique Near Clipping Plane

- This also works for infinite view frustum
- Far plane ends up being parallel to one of the edges between two side planes

For more analysis, see *Journal of Game Development*, Vol 1, No 2
Questions?

- lengyel@terathon.com