
Projection Matrix
Tricks

Eric Lengyel

Outline

 Projection Matrix Internals

 Infinite Projection Matrix

 Depth Modification

 Oblique Near Clipping Plane

 Slides available at
https://terathon.com/

From Camera to Screen
Camera
Space

Homogeneous
Clip Space

Normalized Device
Coordinates

Viewport
Coordinates

Projection Matrix

Perspective Divide

Viewport Transform

Projection Matrix

 The 4×4 projection matrix is really just a linear
transformation in homogeneous space

 It doesn’t actually perform the projection, but
just sets things up right for the next step

 The projection occurs when you divide by w to
get from homogenous coordinates to 3-space

OpenGL projection matrix

 n, f = distances to near, far planes

 e = focal length = 1 / tan(FOV / 2)

 a = viewport height / width

0 0 0
0 0 0

20 0

0 0 1 0

e
e a

f n fn
f n f n

+
− − − −

 −

Infinite Projection Matrix

 Take limit as f goes to infinity

0 0 0
0 0 0

0 0 0
0 0 0

lim 20 0 0 0 1 2
0 0 1 0

0 0 1 0

f

e
e

e a
e a

f n fn
n

f n f n
→∞

 =+

− − − − − − − −

Infinite Projection Matrix

 Directions are mapped to points on the
infinitely distant far plane

 A direction is a 4D vector with w = 0
(and at least one nonzero x, y, z)

 Good for rendering sky objects
 Skybox, sun, moon, stars

 Also good for rendering stencil
shadow volume caps

Infinite Projection Matrix

 The important fact is that z and w are
equal after transformation to clip space:

()
0 0 0

0 0 0
0 0 1 2
0 0 1 0 0

e x ex
e a y e a y

n z z
z

 =

− − −
 − −

Infinite Projection Matrix

 After perspective divide, the
z coordinate should be exactly 1.0,
meaning that the projected point is
precisely on the far plane:

()
ex

e a y
z
z

−
 −

1

ex z
ey az

−
 −

Infinite Projection Matrix

 But there’s a problem...

 The hardware doesn’t actually perform
the perspective divide immediately after
applying the projection matrix

 Instead, the viewport transformation is
applied to the (x, y, z) coordinates first

Infinite Projection Matrix

 Ordinarily, z is mapped from the range
[−1, 1] in NDC to [0, 1] in viewport space
by multiplying by 0.5 and adding 0.5

 This operation can result in a loss of
precision in the lowest bits

 Result is a depth slightly smaller than
1.0 or slightly bigger than 1.0

Infinite Projection Matrix

 If the viewport-space z coordinate is
slightly bigger than 1.0, then fragment
culling occurs

 The hardware thinks the fragments are
beyond the far plane

 Can be corrected by enabling
GL_DEPTH_CLAMP_NV, but this is a
vendor-specific solution

Infinite Projection Matrix

 Universal solution is to modify
projection matrix so that viewport-space
z is always slightly less than 1.0 for
points on the far plane:

()

0 0 0
0 0 0
0 0 1 2
0 0 1 0

e
e a

nε ε

− −
 −

Infinite Projection Matrix

 This matrix still maps the near plane
to −1, but the infinite far plane is now
mapped to 1 − ε

()1 2
11 0
n nn

n
ε ε − −− − = −

() ()1 2 1
01 0
zn z

z
ε ε ε− − − = − −

Infinite Projection Matrix

 Because we’re calculating ε − 1 and
ε − 2, we need to choose

so that 32-bit floating-point precision
limits aren’t exceeded

22 72 2.4 10ε − −≥ ≈ ×

Depth Modification

 Several methods exist for performing
polygon offset
 Hardware support through glPolygonOffset

 Fiddle with glDepthRange

 Tweak the projection matrix

Depth Modification

 glPolygonOffset works well, but
 Can adversely affect hierarchical

z culling performance

 Not guaranteed to be consistent across
different GPUs

 Adjusting depth range
 Reduces overall depth precision

 Both require extra state changes

Depth Modification

 NDC depth is given by a function of
the lower-right 2×2 portion of the
projection matrix:

2 2

1
1 0

f n fn f n fnzz
f n f n f n f n

z

+ + − − − − − − − −= − −

()
2

NDC
f n fnz
f n z f n

+
= +

− −

Depth Modification

 We can add a constant offset ε to the
NDC depth as follows:

2 2

11 0

f n fn f n fnz
zf n f n f n f n

z

ε ε+ + − − − − − − − − − − = − −

()
2

NDC
f n fnz
f n z f n

ε+
= + +

− −

Depth Modification

 w-coordinate unaffected

 Thus, x and y coordinates unaffected

 z offset is constant in NDC

 But this is not constant in camera space

 For a given offset in camera space, the
corresponding offset in NDC depends on
the depth

Depth Modification

 What happens to a camera-space
offset δ ?

()

()

2 2

11 0

f n fn f n fnz
zf n f n f n f n

z

δ
δ

δ

+ + − − − + − +− − − − = − − +

() ()
2 2

NDC
f n fn fnz
f n z f n f n z z

δ
δ

+
= + − − − − +

Depth Modification

 NDC offset as a function of camera-
space offset δ and camera-space z:

 Remember, δ is positive for an
offset toward camera

()
()

2, fnz
f n z z

δε δ
δ

= − − +

Depth Modification

 Need to make sure that ε is big enough
to make a difference in a typical 24-bit
integer z buffer

 NDC range of [−1,1] is divided into
224 possible depth values

 So |ε| should be at least 2/224 = 2−23

Depth Modification

 But we’re adding ε to (f + n)/(f − n),
which is close to 1.0

 Not enough bits of precision in 32-bit
float for this

 So in practice, it’s necessary to use

21 72 4.8 10ε − −≥ ≈ ×

Oblique Near Clipping Plane

 It’s sometimes necessary to restrict
rendering to one side of some arbitrary
plane in a scene

 For example, mirrors and water surfaces

Oblique Near Clipping Plane

 Using an extra hardware clipping plane
seems like the ideal solution
 But some older hardware doesn’t support

user clipping planes

 Enabling a user clipping plane could require
modifying your vertex programs

 There’s a slight chance that a user clipping
plane will slow down your fragment
programs

Oblique Near Clipping Plane

 Extra clipping plane almost always
redundant with near plane

 No need to clip against both planes

Oblique Near Clipping Plane

 We can modify the projection matrix so
that the near plane is moved to an
arbitrary location

 No user clipping plane required

 No redundancy

Oblique Near Clipping Plane

 In NDC, the near plane has
coordinates (0, 0, 1, 1)

Oblique Near Clipping Plane

 Planes are transformed from NDC to
camera space by the transpose of the
projection matrix

 So the plane (0, 0, 1, 1) becomes
M3 + M4, where Mi is the i-th row of the
projection matrix

 M4 must remain (0, 0, −1, 0) so that
perspective correction still works right

Oblique Near Clipping Plane

 Let C = (Cx, Cy, Cz, Cw) be the camera-
space plane that we want to clip against
instead of the conventional near plane

 We assume the camera is on the
negative side of the plane, so Cw < 0

 We must have C = M3 + M4, where
M4 = (0, 0, −1, 0)

Oblique Near Clipping Plane

 M3 = C − M4 = (Cx, Cy, Cz + 1, Cw)

 This matrix maps points on the plane C
to the z = −1 plane in NDC

0 0 0
0 0 0

1
0 0 1 0

x y z w

e
e a

C C C C

 =

+
 −

M

Oblique Near Clipping Plane

 But what happens to the far plane?

 F = M4 − M3 = 2M4 − C

 Near plane and far plane differ only in
the z coordinate

 Thus, they must coincide where they
intersect the z = 0 plane

Oblique Near Clipping Plane

 Far plane is completely hosed!

Oblique Near Clipping Plane

 Depths in NDC no longer represent
distance from camera plane, but
correspond to the position between the
oblique near and far planes

 We can minimize the effect,
and in practice it’s not so bad

Oblique Near Clipping Plane

 We still have a free parameter:
the clipping plane C can be scaled

 Scaling C has the effect of changing the
orientation of the far plane F

 We want to make the new view frustum
as small as possible while still including
the conventional view frustum

Oblique Near Clipping Plane

 Let F = 2M4 − aC

 Choose the point Q which lies furthest
opposite the near plane in NDC:

 Solve for a such that Q lies in plane F
(i.e., F·Q = 0):

() ()()1 sgn ,sgn ,1,1x yC C−= ⋅Q M

42a ⋅
=

⋅
M Q
C Q

Oblique Near Clipping Plane

 Near plane doesn’t move, but far plane
becomes optimal

Oblique Near Clipping Plane

 This also works for infinite view frustum

 Far plane ends up being parallel to one
of the edges between two side planes

 For more analysis, see Journal of Game
Development, Vol 1, No 2

Questions?

 lengyel@terathon.com

	Slide Number 1
	Projection Matrix Tricks���Eric Lengyel
	Outline
	From Camera to Screen
	Projection Matrix
	OpenGL projection matrix
	Slide Number 7
	Infinite Projection Matrix
	Infinite Projection Matrix
	Infinite Projection Matrix
	Infinite Projection Matrix
	Infinite Projection Matrix
	Infinite Projection Matrix
	Infinite Projection Matrix
	Slide Number 15
	Infinite Projection Matrix
	Infinite Projection Matrix
	Infinite Projection Matrix
	Depth Modification
	Depth Modification
	Depth Modification
	Depth Modification
	Depth Modification
	Depth Modification
	Depth Modification
	Depth Modification
	Depth Modification
	Oblique Near Clipping Plane
	Slide Number 29
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Questions?

