Projection Matrix Tricks

Eric Lengyel

Terathon Software

Outline

- Projection Matrix Internals
- Infinite Projection Matrix
- Depth Modification
- Oblique Near Clipping Plane
- Slides available at https://terathon.com/

From Camera to Screen

Projection Matrix

- The 4×4 projection matrix is really just a linear transformation in homogeneous space
- It doesn't actually perform the projection, but just sets things up right for the next step
- The projection occurs when you divide by w to get from homogenous coordinates to 3 -space

OpenGL projection matrix

- $n, f=$ distances to near, far planes
- $e=$ focal length $=1 / \tan (F O V / 2)$
- $a=$ viewport height / width

$$
\left[\begin{array}{cccc}
e & 0 & 0 & 0 \\
0 & e / a & 0 & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Infinite Projection Matrix

- Take limit as f goes to infinity

$$
\lim _{f \rightarrow \infty}\left[\begin{array}{cccc}
e & 0 & 0 & 0 \\
0 & e / a & 0 & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right]=\left[\begin{array}{cccc}
e & 0 & 0 & 0 \\
0 & e / a & 0 & 0 \\
0 & 0 & -1 & -2 n \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Infinite Projection Matrix

- Directions are mapped to points on the infinitely distant far plane
- A direction is a 4D vector with $w=0$ (and at least one nonzero x, y, z)
- Good for rendering sky objects
- Skybox, sun, moon, stars
- Also good for rendering stencil shadow volume caps

Infinite Projection Matrix

- The important fact is that z and w are equal after transformation to clip space:

$$
\left[\begin{array}{cccc}
e & 0 & 0 & 0 \\
0 & e / a & 0 & 0 \\
0 & 0 & -1 & -2 n \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
0
\end{array}\right]=\left[\begin{array}{c}
e x \\
(e / a) y \\
-z \\
-z
\end{array}\right]
$$

Infinite Projection Matrix

- After perspective divide, the z coordinate should be exactly 1.0, meaning that the projected point is precisely on the far plane:

$$
\left[\begin{array}{c}
e x \\
(e / a) y \\
-z \\
-z
\end{array}\right]
$$

$$
\left[\begin{array}{c}
-e x / z \\
-e y / a z \\
1
\end{array}\right]
$$

Infinite Projection Matrix

- But there's a problem...
- The hardware doesn't actually perform the perspective divide immediately after applying the projection matrix
- Instead, the viewport transformation is applied to the (x, y, z) coordinates first

Infinite Projection Matrix

- Ordinarily, z is mapped from the range $[-1,1]$ in NDC to $[0,1]$ in viewport space by multiplying by 0.5 and adding 0.5
- This operation can result in a loss of precision in the lowest bits
- Result is a depth slightly smaller than 1.0 or slightly bigger than 1.0

Infinite Projection Matrix

- If the viewport-space z coordinate is slightly bigger than 1.0, then fragment culling occurs
- The hardware thinks the fragments are beyond the far plane
- Can be corrected by enabling GL_DEPTH_CLAMP_NV, but this is a vendor-specific solution

WWW.GDCONF.COM

Infinite Projection Matrix

- Universal solution is to modify projection matrix so that viewport-space z is always slightly less than 1.0 for points on the far plane:

$$
\left[\begin{array}{cccc}
e & 0 & 0 & 0 \\
0 & e / a & 0 & 0 \\
0 & 0 & \varepsilon-1 & (\varepsilon-2) n \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Infinite Projection Matrix

- This matrix still maps the near plane to -1 , but the infinite far plane is now mapped to $1-\varepsilon$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\varepsilon-1 & (\varepsilon-2) n \\
-1 & 0
\end{array}\right]\left[\begin{array}{c}
-n \\
1
\end{array}\right]=\left[\begin{array}{c}
-n \\
n
\end{array}\right]} \\
& {\left[\begin{array}{cc}
\varepsilon-1 & (\varepsilon-2) n \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
z \\
0
\end{array}\right]=\left[\begin{array}{c}
z(\varepsilon-1) \\
-z
\end{array}\right]}
\end{aligned}
$$

Infinite Projection Matrix

- Because we're calculating $\varepsilon-1$ and $\varepsilon-2$, we need to choose

$$
\varepsilon \geq 2^{-22} \approx 2.4 \times 10^{-7}
$$

so that 32-bit floating-point precision limits aren't exceeded

Depth Modification

- Several methods exist for performing polygon offset
- Hardware support through glPolygonOffset
- Fiddle with glDepthRange
- Tweak the projection matrix

Depth Modification

- glPolygonOffset works well, but
- Can adversely affect hierarchical z culling performance
- Not guaranteed to be consistent across different GPUs
- Adjusting depth range
- Reduces overall depth precision
- Both require extra state changes

Depth Modification

- NDC depth is given by a function of the lower-right 2×2 portion of the projection matrix:

$$
\begin{gathered}
{\left[\begin{array}{cc}
-\frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
z \\
1
\end{array}\right]=\left[\begin{array}{c}
-\frac{f+n}{f-n} z-\frac{2 f n}{f-n} \\
-z
\end{array}\right]} \\
z_{N D C}=\frac{f+n}{f-n}+\frac{2 f n}{z(f-n)}
\end{gathered}
$$

Depth Modification

- We can add a constant offset ε to the NDC depth as follows:

$$
\begin{gathered}
{\left[\begin{array}{cc}
-\frac{f+n}{f-n}-\varepsilon & -\frac{2 f n}{f-n} \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
z \\
1
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{f+n}{f-n}-\varepsilon\right) z-\frac{2 f n}{f-n} \\
-z
\end{array}\right]} \\
z_{N D C}=\frac{f+n}{f-n}+\frac{2 f n}{z(f-n)}+\varepsilon
\end{gathered}
$$

Depth Modification

- w-coordinate unaffected
- Thus, x and y coordinates unaffected
- z offset is constant in NDC
- But this is not constant in camera space
- For a given offset in camera space, the corresponding offset in NDC depends on the depth

Depth Modification

- What happens to a camera-space offset δ ?

$$
\begin{gathered}
{\left[\begin{array}{cc}
-\frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
-1 & 0
\end{array}\right]\left[\begin{array}{c}
z+\delta \\
1
\end{array}\right]=\left[\begin{array}{c}
-\frac{f+n}{f-n}(z+\delta)-\frac{2 f n}{f-n} \\
-(z+\delta)
\end{array}\right]} \\
z_{N D C}=\frac{f+n}{f-n}+\frac{2 f n}{z(f-n)}-\frac{2 f n}{f-n}\left(\frac{\delta}{z(z+\delta)}\right)
\end{gathered}
$$

Depth Modification

- NDC offset as a function of cameraspace offset δ and camera-space z:

$$
\varepsilon(\delta, z)=-\frac{2 f n}{f-n}\left(\frac{\delta}{z(z+\delta)}\right)
$$

- Remember, δ is positive for an offset toward camera

Depth Modification

- Need to make sure that ε is big enough to make a difference in a typical 24-bit integer z buffer
- NDC range of $[-1,1]$ is divided into 2^{24} possible depth values
- So $|\varepsilon|$ should be at least $2 / 2^{24}=2^{-23}$

Depth Modification

- But we're adding ε to $(f+n) /(f-n)$, which is close to 1.0
- Not enough bits of precision in 32-bit float for this
- So in practice, it's necessary to use

$$
|\varepsilon| \geq 2^{-21} \approx 4.8 \times 10^{-7}
$$

Oblique Near Clipping Plane

- It's sometimes necessary to restrict rendering to one side of some arbitrary plane in a scene
- For example, mirrors and water surfaces

Oblique Near Clipping Plane

- Using an extra hardware clipping plane seems like the ideal solution
- But some older hardware doesn't support user clipping planes
- Enabling a user clipping plane could require modifying your vertex programs
- There's a slight chance that a user clipping plane will slow down your fragment programs

Oblique Near Clipping Plane

- Extra clipping plane almost always redundant with near plane
- No need to clip against both planes

Oblique Near Clipping Plane

- We can modify the projection matrix so that the near plane is moved to an arbitrary location
- No user clipping plane required
- No redundancy

Oblique Near Clipping Plane

- In NDC, the near plane has coordinates (0, 0, 1, 1)

Oblique Near Clipping Plane

- Planes are transformed from NDC to camera space by the transpose of the projection matrix
- So the plane $(0,0,1,1)$ becomes $M_{3}+M_{4}$, where M_{i} is the i-th row of the projection matrix
- M_{4} must remain $(0,0,-1,0)$ so that perspective correction still works right

Oblique Near Clipping Plane

- Let $C=\left(C_{x}, C_{y}, C_{z}, C_{w}\right)$ be the cameraspace plane that we want to clip against instead of the conventional near plane
- We assume the camera is on the negative side of the plane, so $C_{w}<0$
- We must have $C=M_{3}+M_{4}$, where $M_{4}=(0,0,-1,0)$

Oblique Near Clipping Plane

- $M_{3}=C-M_{4}=\left(C_{x}, C_{y}, C_{z}+1, C_{w}\right)$

$$
\mathbf{M}=\left[\begin{array}{cccc}
e & 0 & 0 & 0 \\
0 & e / a & 0 & 0 \\
C_{x} & C_{y} & C_{z}+1 & C_{w} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

- This matrix maps points on the plane C to the $z=-1$ plane in NDC

Oblique Near Clipping Plane

- But what happens to the far plane?
- $F=M_{4}-M_{3}=2 M_{4}-C$
- Near plane and far plane differ only in the z coordinate
- Thus, they must coincide where they intersect the $z=0$ plane

Oblique Near Clipping Plane

- Far plane is completely hosed!

WWW.GDCONF.COM

Oblique Near Clipping Plane

- Depths in NDC no longer represent distance from camera plane, but correspond to the position between the oblique near and far planes
- We can minimize the effect, and in practice it's not so bad

Oblique Near Clipping Plane

- We still have a free parameter: the clipping plane C can be scaled
- Scaling C has the effect of changing the orientation of the far plane F
- We want to make the new view frustum as small as possible while still including the conventional view frustum

Oblique Near Clipping Plane

- Let $F=2 M_{4}-a C$
- Choose the point Q which lies furthest opposite the near plane in NDC:

$$
\mathbf{Q}=\mathbf{M}^{-1} \cdot\left(\operatorname{sgn}\left(C_{x}\right), \operatorname{sgn}\left(C_{y}\right), 1,1\right)
$$

- Solve for a such that Q lies in plane F (i.e., F•Q = 0):

$$
a=\frac{2 \mathbf{M}_{4} \cdot \mathbf{Q}}{\mathbf{C} \cdot \mathbf{Q}}
$$

Oblique Near Clipping Plane

- Near plane doesn't move, but far plane becomes optimal

Oblique Near Clipping Plane

- This also works for infinite view frustum
- Far plane ends up being parallel to one of the edges between two side planes
- For more analysis, see Journal of Game Development, Vol 1, No 2

Questions?

- lengyel@terathon.com

