Game Math Case Studies

Eric Lengyel, PhD
Terathon Software
Content of this Talk

- Real-world problems from game dev
 - Small problems, that is, and easy to state
- Actual solutions used in shipping games
 - Using math that’s not too advanced
- Strategies for finding elegant solutions
Occlusion boxes

- Plain boxes put in world as occluders
- Extrude away from camera to form occluded region of space where objects don’t need to be rendered
- How to do this most efficiently?
Occlusion boxes

- Could classify box faces as front/back and find silhouette edges
 - Similar to stencil shadow technique
- A better solution accounts for small solution space
Occlusion boxes

- There are exactly 26 possible silhouettes

- Three possible states for camera position on three different axes
 - position < box min
 - position > box max
 - box min ≤ position ≤ box max
 - Inside box excluded
\[
\begin{array}{c}
\text{\(y > y_{\text{max}}\)} \\
\hline
\text{\(y_{\text{min}} \leq y \leq y_{\text{max}}\)} \\
\hline
\text{\(x < x_{\text{min}}\)} \\
\text{\(y < y_{\text{min}}\)} \\
\end{array}
\]

\[x_{\text{min}} \leq x \leq x_{\text{max}}\]
\[x > x_{\text{max}}\]

<table>
<thead>
<tr>
<th>condition</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x > x_{\text{max}})</td>
<td>0x01</td>
</tr>
<tr>
<td>(x < x_{\text{min}})</td>
<td>0x02</td>
</tr>
<tr>
<td>(y > y_{\text{max}})</td>
<td>0x04</td>
</tr>
<tr>
<td>(y < y_{\text{min}})</td>
<td>0x08</td>
</tr>
<tr>
<td>(z > z_{\text{max}})</td>
<td>0x10</td>
</tr>
<tr>
<td>(z < z_{\text{min}})</td>
<td>0x20</td>
</tr>
</tbody>
</table>
Finite classifications

Marching Cubes, fixed polarity
(256 cases, 18 classes)

Transvoxel Algorithm
(512 cases, 73 classes)
Occlusion boxes

- Calculate camera position state and use table to get silhouette

- Always a closed convex polygon with exactly 4 or 6 vertices and edges
Occlusion boxes

// Upper 3 bits = vertex count, lower 5 bits = polygon index
const unsigned_int8 occlusionPolygonIndex[43] = {
 0x00, 0x80, 0x81, 0x00, 0x82, 0xC9, 0xC8, 0x00, 0x83, 0xC7, 0xC6, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x84, 0xCF, 0xCE, 0x00, 0xD1, 0xD9, 0xD8, 0x00, 0xD0, 0xD7, 0xD6, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x85, 0xCB, 0xCA, 0x00, 0xCD, 0xD5, 0xD4, 0x00, 0xCC, 0xD3, 0xD2
};

// All 26 polygons with vertex indexes from diagram on left
const unsigned_int8 occlusionVertexIndex[26][6] = {
 {1, 3, 7, 5},
 {2, 0, 4, 6},
 {3, 2, 6, 7},
 {0, 1, 5, 4},
 {4, 5, 7, 6},
 {1, 0, 2, 3},
 {2, 0, 1, 5, 4, 6},
 {0, 1, 3, 7, 5, 4},
 {3, 2, 0, 4, 6, 7},
 {1, 3, 2, 6, 7, 5},
 {1, 0, 4, 6, 2, 3},
 {5, 1, 0, 2, 3, 7},
 {4, 0, 2, 3, 1, 5},
 {0, 2, 6, 7, 3, 1},
 {0, 4, 5, 7, 6, 2},
 {4, 5, 1, 3, 7, 6},
 {1, 5, 7, 6, 4, 0},
 {5, 7, 3, 2, 6, 4},
 {3, 1, 5, 4, 6, 2},
 {2, 3, 7, 5, 4, 0},
 {1, 0, 4, 6, 7, 3},
 {0, 2, 6, 7, 5, 1},
 {7, 6, 2, 0, 1, 5},
 {6, 4, 0, 1, 3, 7},
 {5, 7, 3, 2, 0, 4},
 {4, 5, 1, 3, 2, 6}
};
Occlusion boxes

- Any silhouette edge that is off screen can be eliminated to make occlusion region larger

- Gives occluder infinite extent in that direction

- Allows more objects to be occluded because they must be completely inside extruded silhouette to be hidden
Occlusion boxes

- Silhouette edge is culled if both vertices on negative side of some frustum plane

- *And* extruded plane normal and frustum plane normal have positive dot product
Occlusion boxes

- **Strategy:**

 Look for ways to classify solutions
Oblique near plane trick

- Sometimes need a clipping plane for a flat surface in scene
- For example, water or mirror
 - Prevent submerged objects from appearing in reflection
Ordinary frustum

Oblique near plane
Oblique near plane trick

- Hardware clipping plane?
 - May not even be supported
 - Requires shader modification
 - Could be slower
Oblique near plane trick

- Extra clipping plane almost always redundant with near plane
- Don’t need to clip to both
Oblique near plane trick

- Possible to modify projection matrix
- Move near plane to arbitrary location
- No extra clipping plane, no redundancy
Oblique near plane trick

- In normalized device coordinates (NDC), near plane has coordinates \((0,0,1,1)\)
Oblique near plane trick

- Planes (row antivectors) are transformed from NDC to camera space by right multiplication by the projection matrix.

- So the plane \((0, 0, 1, 1)\) becomes \(M_3 + M_4\), where \(M_i\) is the \(i\)-th row of the projection matrix.
Oblique near plane trick

- M_4 must remain $(0, 0, -1, 0)$ so that perspective correction still works right.

- Let $C = (C_x, C_y, C_z, C_w)$ be the camera-space plane that we want to clip against.
 - Assume $C_w < 0$, camera on negative side.

- We must have $C = M_3 + (0, 0, -1, 0)$.

Oblique near plane trick

- \(M_3 = C - M_4 = (C_x, C_y, C_z + 1, C_w) \)

\[
M = \begin{bmatrix}
e & 0 & 0 & 0 \\
0 & e/a & 0 & 0 \\
C_x & C_y & C_z + 1 & C_w \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

- This matrix maps points on the plane \(C \) to the plane \(z = -1 \) in NDC
Oblique near plane trick

- But what happens to the far plane?
- \(F = M_4 - M_3 = 2M_4 - C \)

- Near plane and (negative) far plane differ only in the \(z \) coordinate
- Thus, they must coincide where they intersect the \(z = 0 \) plane
Oblique near plane trick
Oblique near plane trick

- Far plane is a complete mess

- Depths in NDC no longer represent distance from camera plane, but correspond to some skewed direction between near and far planes

- We can minimize the effect, and in practice it’s not so bad
Oblique near plane trick

- We still have a free parameter: the clipping plane C can be scaled.
- Scaling C has the effect of changing the orientation of the far plane F.
- We want to make the new view frustum as small as possible while still including the conventional view frustum.
Oblique near plane trick

- Let \(F = 2M_4 - aC \)
- Choose the point \(Q \) which lies furthest opposite the near plane in NDC:

\[
Q = M^{-1} \cdot (\text{sgn}(C_x),\text{sgn}(C_y),1,1)
\]

- Solve for \(a \) such that \(Q \) lies in plane \(F \):

\[
a = \frac{M_4 \land Q}{C \land Q}
\]
Oblique near plane trick

- Near plane doesn’t move, but far plane becomes optimal
Oblique near plane trick

- Works for any perspective projection matrix
 - Even with infinite far depth

Oblique near plane trick

- **Strategy:**

 Get the big picture
Fog bank occlusion

- Consider fog bank bounded by plane

- Linear density gradient with increasing depth
 - Perpendicular to plane
 - Zero density at plane
Fog bank occlusion
Fog bank occlusion
Fog bank occlusion

- For a given camera position, we want to cull objects that are completely fogged
- Surface beyond which objects are completely fogged is interesting...
Fog bank occlusion

(video)
Fog bank occlusion

- Culling against that curve is impractical.

- Instead, calculate its maximum extent parallel to the fog plane.

- Then cull against plane perpendicular to fog plane and camera view direction at that distance.
Fog bank occlusion
Fog bank occlusion

- $F = \text{fog plane, normal outward}$
- $C = \text{camera position}$
- $P = \text{point being shaded}$
- $V = C - P$
- $a = \text{linear density coefficient}$
Fog bank occlusion

- Density as function of depth:

\[\rho(P) = -a(F \land P) \]

- Log light fraction \(g(P) \) for given \(C \) and \(P \):†

\[g(P) = -a\|V\| \frac{F \land P + F \land C}{2} \]

Fog bank occlusion

- Set $g(P)$ to log of small enough fraction to be considered fully fogged

- For example: $g(P) = -\log(1/256)$

- This is constant
Fog bank occlusion

• For given C, we need to find P with the maximum horizontal distance d from C that also satisfies

$$g(P) = -a\|V\|\frac{F \land P + F \land C}{2}$$
Fog bank occlusion

- So express d as a function of P and find the zeros of the derivative, right?

- Turns out to be a huge mess

- Not clear that good solution exists
Fog bank occlusion

- Insight: instead of using independent variable P, express $F \land P$ as a fraction of $F \land C$

\[
\begin{align*}
F \land P &= t(F \land C) \\
g(P) &= -a\|V\|(t+1)(F \land C) \\
2
\end{align*}
\]
Fog bank occlusion

\[\|V\|^2 = d^2 + (t - 1)^2 (F \wedge C)^2 \]
Fog bank occlusion

- Can now write $g(P)$ as follows

$$g(P) = -\frac{a}{2} (t+1)(F \land C) \sqrt{d^2 + (t-1)^2 (F \land C)^2}$$

- And solve for d^2:

$$d^2 = \frac{m^2}{(t+1)^2 (F \land C)^2} - (t-1)^2 (F \land C)^2$$

$$m = \frac{2g(P)}{a}$$
Fog bank occlusion

- Take derivative, set to zero, simplify:

\[t^4 + 2t^3 - 2t + k - 1 = 0 \]

\[k = \frac{m^2}{(F \wedge C)^4} \]

- Now need to solve quartic polynomial
Fog bank occlusion

- Know what your functions look like!
- Always k at $t = 1$, local min at $t = 1/2$
Fog bank occlusion

- If function is negative at $t = 1/2$, then solution exists
 - Happens exactly when $k < 27/16$
- Tempting to calculate with closed-form solution to quartic
- But almost always better to use Newton’s method, especially in this case
Fog bank occlusion

- Newton’s method:

\[t_{i+1} = t_i - \frac{f(t)}{f'(t)} \]
Fog bank occlusion

- In our case,

 \[f'(t) = 4t^3 + 6t^2 - 2 \]

- Start with \(t_0 = 1 \):

 \[f(1) = k \]
 \[f'(1) = 8 \]
Fog bank occlusion

- Calculate first iteration explicitly:

\[t_1 = 1 - \frac{k}{8} \]

- Newton’s method converges very quickly with 1–2 more iterations
Fog bank occlusion

- Plug t back into function for d^2 to get culling distance

$$d^2 = \frac{m^2}{(t+1)^2 (F \wedge C)^2} - (t-1)^2 (F \wedge C)^2$$

- If $d^2 > 0$ when $t = 0$, possible larger culling distance
Fog bank occlusion

- Solution exists at $t = 0$ when $k > 1$
- Solution exists deeper when $k < 27/16$
- Take the larger distance if both exist
Fog bank occlusion

\[k > \frac{27}{16} \]

\[k \in [1, \frac{27}{16}] \]

\[k < 1 \]
Fog bank occlusion

- **Strategy:**
 - Eliminate variables
 - Know what functions look like
 - Embrace Newton’s method
Contact

- lengyel@terathon.com
- http://www.terathon.com/lengyel/
- @EricLengyel
Supplemental slides

- Bézier animation curves
- Floor and ceiling functions
- Cross product trick
- Bit manipulation tricks
Bézier animation curves

- Another note about Newton’s method

- Cubic 2D Bézier curves often used to animate some component of an object’s transform

- Position x, y, z or rotation angle, for example
Bézier animation curves

- 2D coordinates on curve are time t and some scalar value v
- t is *not* the parameter along the curve
- Big source of confusion in data exchange
Bézier animation curves

- Control points specified in \((t, v)\) space
- Time coordinates increase monotonically
Bézier animation curves

- To evaluate the value of a curve $P(s)$ at a given time t, it’s necessary to find the parameter s along the curve for which $P_t(s) = t$

- Requires solving a cubic polynomial

- Newton’s method perfect for this case
Bézier animation curves

- For details, see Track structure in OpenGEX Specification
- opengex.org
Floor and ceiling

- Not all CPUs have floating-point floor/ceil/trunc/round instructions
- Need to implement with ordinary math
- Needs to be fast, no FP/int conversions
Floor function

- 32-bit float has 23 bits in mantissa

 Thus, any value greater than or equal to 2^{23} is necessarily an integer

 - No bits left for any fractional part
Floor function

- Trick is to add and subtract 2^{23}

- The addition causes all fraction bits to be shifted out the right end

- The subtraction shifts zeros back into the space previously occupied by the fraction
Floor function

- When we add 2^{23}, the original number is rounded to the nearest integer + 2^{23}

- If result is greater than original number, then simply subtract one to get floor
Floor function

- What about negative numbers?

- Use the same trick, but subtract 2^{23} first, and then add it back

- Can combine for all possible inputs
Floor function

__m128 floor(__m128 x)
{
 __m128 one = {0x3F800000};
 __m128 two23 = {0x4B000000};
 __m128 f = _mm_sub_ps(_mm_add_ps(f, two23), two23);
 f = _mm_add_ps(_mm_sub_ps(x, two23), two23);
 f = _mm_sub_ps(f, _mm_and_ps(one, _mm_cmplt_ps(x, f)));
 return (f);
}
Floor function

- But wait, this fails for some very large inputs (bigger than 2^{23})

- All of these inputs are already integers!
 - They must be if they’re bigger than 2^{23}
Floor function

- So just return the input if it’s > 2^{23}

```c
__m128 sgn = {0x80000000};
__m128 msk = _mm_cmplt_ps(two23, _mm_andnot_ps(sgn, x));
f = _mm_or_ps(_mm_andnot_ps(msk, f), _mm_and_ps(msk, x));
```
Ceiling function

- Instead of subtracting one if result is greater than input, add one if result is less than input

```c
f = _mm_add_ps(f, _mm_and_ps(one, _mm_cmplt_ps(f, x)));
```
Floor and ceiling

- **Strategy:**

 Reduce problem domain
Cross product trick

- Cross product $V \times W$ given by:
 \[V.yzx \times W.zxy - W.zxy \times V.yzx \]

- Two mults, one sub, **four** shuffles
Cross product trick

- Can do this instead:

\[(V \times W.yzx - V.yzx \times W).yzx\]

- Two mults, one sub, **three** shuffles
 - And same shuffle each time
Bit manipulation tricks

- Range checks
- Non-branching calculations
- Logic formulas
Integer range checks

- Integer range checks can always be done with a single comparison:

\[(\text{unsigned}) (x - \text{min}) \leq (\text{unsigned}) (\text{max} - \text{min})\]
Non-branching calculations

- Using logic tricks to avoid branches in integer calculations
- Many involve using sign bit in clever way
- Also useful to know \(-x == \sim x + 1\)
Non-branching calculations

- Helps scheduling, increases ILP
- Reduces pollution in branch history table
- But can obfuscate code
 - Use where performance is very important
 - Don’t bother elsewhere
Clever uses of sign bit

- if (a < 0) ++x;

- Replace with:

 - x -= a >> 31; // 32-bit ints
Right-shifting negative integers

- Shifting \(n \)-bit int right by \(n - 1 \) bits:
 - All zeros for positive ints (or zero)
 - All ones for negative ints

- C++ standard says \(a >> 31 \) is “implementation-defined” if \(a \) is negative
Right-shifting negative integers

- Any sensible compiler generates instruction that replicates sign bit

- To avoid issue in this case, could also use:

 - \(x += (\text{uint32}) a >> 31 \)
Predicates for 32-bit signed ints

- \((x == 0)\) \(\text{lzcnt}(x) \gg 5\)
- \((x != 0)\) \((\text{lzcnt}(x) \gg 5)^1\)
- \((x < 0)\) \((\text{uint32}) x \gg 31\)
- \((x > 0)\) \((\text{uint32}) -x \gg 31\)
- \((x == y)\) \(\text{lzcnt}(x - y) \gg 5\)
- \((x != y)\) \((\text{uint32}) ((x - y) | (y - x)) \gg 31\)

- \(\text{lzcnt}()\) is leading zero count
Absolute value

- \(y = x >> 31 \)
- \(\text{abs}(x) = (x \ ^ \ y) - y \)

- Because \(-x = \sim x + 1\)
 \[= x \ ^ \ 0xFFFFFFFF - 0xFFFFFFFF\]
Conditional negation

- Same trick can be used to negate for any bool condition:

 - if (condition) x = -x;

 - x = (x ^ -condition) + condition
Logic Formulas

<table>
<thead>
<tr>
<th>Formula</th>
<th>Operation / Effect</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x & (x - 1)$</td>
<td>Clear lowest 1 bit.</td>
<td></td>
</tr>
<tr>
<td>$x \mid (x + 1)$</td>
<td>Set lowest 0 bit.</td>
<td></td>
</tr>
<tr>
<td>$x \mid (x - 1)$</td>
<td>Set all bits to right of lowest 1 bit.</td>
<td></td>
</tr>
<tr>
<td>$x & (x + 1)$</td>
<td>Clear all bits to right of lowest 0 bit.</td>
<td></td>
</tr>
<tr>
<td>$x & \neg x$</td>
<td>Extract lowest 1 bit.</td>
<td></td>
</tr>
<tr>
<td>$\neg x & (x + 1)$</td>
<td>Extract lowest 0 bit (as a 1 bit).</td>
<td></td>
</tr>
<tr>
<td>$\neg x \mid (x - 1)$</td>
<td>Create mask for bits other than lowest 1 bit.</td>
<td></td>
</tr>
<tr>
<td>$x \mid \neg (x + 1)$</td>
<td>Create mask for bits other than lowest 0 bit.</td>
<td></td>
</tr>
<tr>
<td>$x \mid \neg x$</td>
<td>Create mask for bits left of lowest 1 bit, inclusive.</td>
<td></td>
</tr>
<tr>
<td>$x \ ^\lor \neg x$</td>
<td>Create mask for bits left of lowest 1 bit, exclusive.</td>
<td></td>
</tr>
<tr>
<td>$\neg x \mid (x + 1)$</td>
<td>Create mask for bits left of lowest 0 bit, inclusive.</td>
<td></td>
</tr>
<tr>
<td>$\neg x \ ^\lor (x + 1)$</td>
<td>Create mask for bits left of lowest 0 bit, exclusive.</td>
<td>Also $x \equiv (x + 1)$.</td>
</tr>
<tr>
<td>$x \ ^\lor (x - 1)$</td>
<td>Create mask for bits right of lowest 1 bit, inclusive.</td>
<td>0 becomes -1.</td>
</tr>
<tr>
<td>$\neg x & (x - 1)$</td>
<td>Create mask for bits right of lowest 1 bit, exclusive.</td>
<td>0 becomes -1.</td>
</tr>
<tr>
<td>$x \ ^\lor (x + 1)$</td>
<td>Create mask for bits right of lowest 0 bit, inclusive.</td>
<td>remains -1.</td>
</tr>
<tr>
<td>$x & (\neg x - 1)$</td>
<td>Create mask for bits right of lowest 0 bit, exclusive.</td>
<td>remains -1.</td>
</tr>
</tbody>
</table>

This table from "Bit Hacks for Games", *Game Engine Gems 2*, A K Peters, 2011.
Contact

- lengyel@terathon.com
- http://www.terathon.com/lengyel/
- @EricLengyel