
Linear Algebra Upgraded

Eric Lengyel, Ph.D.
Terathon Software

About the speaker
● Working in game/graphics dev since 1994

● Previously at Sierra, Apple, Naughty Dog
● Current projects:

● Slug Library, C4 Engine, The 31st, FGED

2

About this talk
● Vector / matrix implementation in C++

● Vectors, points, planes, lines, antivectors
● Swizzling (like shading languages)
● Matrix manipulation
● 2D, 3D, 4D

3

About this talk
● Promoting mathematical correctness
● Providing zero-cost conveniences

● Vector swizzling: v1 = v2.zyx
● Row/column extraction: m.row1, m.col0
● Free transpose: v1 = m.transpose * v2

4

About this talk
● Many ways to implement math library
● Many ways equally correct
● Purpose of this talk is to share my

experiences with code I’ve developed and
refined over many years and give advice

● You are free to implement what you like

5

About this talk
● Skipping obvious stuff

● Like overloading operator + for two vectors

● Focusing on things that are not common

6

Class Names
● Vector2D, Vector3D, Vector4D, Point3D
● Matrix3D, Matrix4D, Transform4D
● Bivector3D (normals)
● Bivector4D (lines)
● Trivector4D (planes)

7

Grassmann Algebra
● Foundations of Game Engine

Development, Volume 1

● “Fundamentals of Grassmann
Algebra” (GDC 2012)

● “Grassmann Algebra in Game
Development” (GDC 2014)

8

Grassmann Algebra
● Thorough understanding not necessary

● Vector/antivector distinction most important

● Various facts stated throughout this talk

9

Basic Vector
class Vector2D
{

public:

float x, y;

...
};

10

class Vector4D
{

public:

float x, y, z, w;

...
};

class Vector3D
{

public:

float x, y, z;

...
};

Constructors
Vector3D() = default;

Vector3D(float a, float b, float c)
{

x = a; y = b; z = c;
}

Vector3D(const Vector3D& v)
{

x = v.x; y = v.y; z = v.z;
}

11

Promotions
Vector3D(const Vector2D& v)
{

x = v.x;
y = v.y;
z = 0.0F;

}

12

Vector4D(const Vector3D& v)
{

x = v.x;
y = v.y;
z = v.z;
w = 0.0F;

}

Overloaded Operators
● Obvious addition / subtraction
● Multiplication by scalar
● Division by scalar
● Multiplication of two vectors componentwise

● Consistent with shading languages

13

Division by Scalar
Vector3D& operator /=(float s)
{

float t = 1.0F / s;
x *= t;
y *= t;
z *= t;
return (*this);

}

14

Dot and Cross Product
● Recommend dot() and cross() functions
● Could overload * and % (or others)

● But this can get confusing
● Makes code hard to read

15

Wedge and Antiwedge Product
● Could use wedge() function
● I prefer overloading ^ operator

● Have to deal with low operator precedence
● Just means using parentheses a lot

● Used for both wedge and antiwedge product

16

Wedge Product
● Vector3D ^ Vector3D = Bivector3D

● Like cross product

● Vector3D ^ Bivector3D = scalar
● Like dot product

17

Points
● Same components as vector
● But behaves differently
● w = 1 when promoted to 4D
● Translation included when multiplied

by 4×4 matrix

18

Points
● Often, we just want point to be a vector

● Other times, we want to enforce point
used instead of vector

● Special case math for points
19

Points
● What works:

● Make point a subclass of vector

20

Point3D Class
class Point3D : public Vector3D
{

public:

Point3D() = default;
Point3D(float a, float b, float c) : Vector3D(a, b, c) {}
Point3D(const Point3D& p) : Vector3D(p) {}

};

21

Point3D Class
● Point type can always be implicitly converted

to vector type at no cost
● Can pass point to function accepting vector
● Can mix vectors and points in calculations
● Overload functions/operators where special

behavior is needed

22

Point as Subclass
● Point is specific type of vector
● Vector can’t be implicitly converted to point
● Function accepting a point must always have

a point passed to it

23

Point Operations
● Point + Point = Point
● Point − Point = Vector
● Point * Scalar = Point

24

Wedge Product
● Point3D ^ Point3D = Bivector4D

● Two points make a line

● Point3D ^ Point3D ^ Point3D = Trivector4D
● Three points make a plane

25

Conversion of Vector to Point
● Sometimes want a vector to be a point

● Rare for me, only 19 uses in 600K+ lines of code

● Create a “Zero” type to act as point at origin
● Add vector to origin to turn it into a point
● No casting, zero cost

26

Zero Type
class Zero3DType {};

extern const Zero3DType Zero3D;

const Point3D& operator +(const Zero3DType&, const Vector3D& v)
{

return (reinterpret_cast<const Point3D&>(v));
}

Point3D p = Zero3D + (expression producing 3D vector);

27

Promotion of Points
Vector4D(const Point2D& p)
{

x = p.x;
y = p.y;
z = 0.0F;
w = 1.0F;

}

28

Vector4D(const Point3D& p)
{

x = p.x;
y = p.y;
z = p.z;
w = 1.0F;

}

Basic Matrix

29

class Matrix3D
{

public:

float n[3][3];

...
};

class Matrix4D
{

public:

float n[4][4];

...
};

Matrices
● Think of matrix as array of vectors
● We want this storage order

● Column vectors → matrix is array of columns
● Row vectors → matrix is array of rows

30

Vector Array
● Object-to-world

transform is
array of vectors
● World x = 1st vector
● World y = 2nd vector
● World z = 3rd vector

31

x

y

z

Operator []
Vector3D& operator [](int index)
{

return (*reinterpret_cast<Vector3D *>(n[index]);
}

const Vector3D& operator [](int index) const
{

return (*reinterpret_cast<const Vector3D *>(n[index]);
}

32

Row or Column Vectors
● Vectors can be thought of as

1×n row matrices
● Or vectors can be thought of as

n×1 column matrices
● Neither is more mathematically

correct than the other

33

Row or Column Vectors
● Consistency is what matters
● Pick one convention and stick to it
● Everything works out the same
● But matrix-vector products will have

operands in opposite orders

34

Matrix Storage
● Row vectors → matrix is array of rows

● “Row-major” storage order

● Column vectors → matrix is array of columns
● “Column-major” storage order

35

Operand Order
● Row vectors transformed by matrix on right

● Column vectors transformed by matrix on left

36

[] []x y z x y zv v v v v v′ ′ ′ = M

x x

y y

z z

v v
v v
v v

′   
   ′ =   
′      

M

Column Vectors
● I use column vectors
● Remainder of this talk uses column vectors
● Convention used by scientists and engineers
● Matrix composition and quaternion

composition have same ordering
● Consistency is king

37

Vectors and Antivectors
● Vectors are n×1 column matrices
● Antivectors are 1×n row matrices

● (Whichever you choose for vectors,
it’s the opposite for antivectors.)

38

Vectors and Antivectors
● Vectors are ordinary directions

● Tangent, bitangent, velocity, force, etc.

● Antivectors are formed by cross products
● Normal, angular velocity, torque, etc.
● Bivectors in 3D, with planar orientation

39

Planes
● Planes are 4D antivectors
● Wedge product of 3 homogeneous points

40

Transformation
● Vector (column) is transformed as

● Antivector (row) is transformed as

41

′ =v Mv

() () 1adj det −′ = =n n M n M M

Transformation
● Can enforce transformation rules by using

different types for vectors / antivectors
● Implement operators only for valid products
● Can’t accidentally multiply normal or plane

with matrix on the left

42

Transformation
Vector3D operator *(const Matrix3D& m, const Vector3D& v);

Vector4D operator *(const Matrix4D& m, const Vector4D& v);

Bivector3D operator *(const Bivector3D& b, const Matrix3D& m);

Trivector4D operator *(const Trivector4D& t, const Matrix4D& m);

43

Normal Transformation
● If 3×3 matrix M is orthogonal, M−1 = MT

● So don’t need inverse to transform normal:

● In this case, can treat normal like vector:

44

1 T−′ = =n nM nM

()T T′ =n Mn

Plane Transformation
● Can’t do same thing for plane f
● 4×4 matrix H generally not orthogonal
● Always need adjugate for correct transform:

45

() () 1adj det −′ = =f f H f H H

Swizzling
● Shading languages have swizzles
● Can rearrange components
● Can extract subvectors
● All we can do in C++ with our basic vector

class is .x, .y, .z, etc.

46

Swizzling Examples
Vector3D v;

v.xyz
v.zyx

v.xy
v.zx

...

47

Swizzling
● Making this work requires some abstraction
● And some C++ templates
● But it can be done cleanly
● And it’s worth it, IMO

48

Type Structures
● One for each mathematical entity

● Vector2D, Vector3D, Bivector3D, Matrix3D, etc.
● Holds type info about components

and subparts
● Used by templates

49

Type Structures
struct TypeVector3D
{

typedef float component_type;
typedef Vector2D vector2D_type;
typedef Vector3D vector3D_type;

};

50

Component Template
● Abstraction of vector component
● Type struct is a template parameter

● Important part is that the component
index is a template parameter

51

Component Template
template <typename type_struct, int count, int index>
class Component
{

public:

typedef typename type_struct::component_type component_type;

component_type data[count];

operator component_type&(void) { return (data[index]); }
operator const component_type&(void) const { return (data[index]); }
...

52

2D Subvector Template
● Abstraction of two components of n-D vector
● Type struct is again a template parameter

● New parameter: boolean value indicating
whether subvector is an antivector

53

2D Subvector Template
template <typename type_struct, int count, int index_x, int index_y>
class Subvec2D
{

public:

typedef typename type_struct::component_type component_type;
typedef typename type_struct::vector2D_type vector2D_type;

component_type data[count];
...

54

3D and 4D Subvectors
● Similar to 2D subvector
● With more index template parameters
● Also with an “anti” template parameter to

distinguish between vectors and antivectors

55

Conversion to Vector
● Subvectors are generic set of components
● Need to be able to implicitly convert to

vectors of same dimension
● When components are consecutive in

memory, don’t want any copying

56

Converter Templates
● Turns an n-D subvector into an n-D vector
● Used by conversion operators in subvector

class templates
● Explicit specializations handle cases when

components are consecutive

57

ConverterVector2D Template
template <typename type_struct, int index_x, int index_y>
struct ConverterVector2D
{

typedef typename type_struct::component_type component_type;
typedef typename type_struct::vector2D_type vector2D_type;
typedef typename type_struct::vector2D_type const_vector2D_type;

static vector2D_type Convert(component_type *data)
{

return (vector2D_type(data[index_x], data[index_y]));
}

};

58

Explicit Specializations
template <typename type_struct>
struct ConverterVector2D<type_struct, 0, 1>
{

typedef typename type_struct::component_type component_type;
typedef typename type_struct::vector2D_type& vector2D_type;
typedef const typename type_struct::vector2D_type& const_vector2D_type;

static vector2D_type Convert(component_type *data)
{

return (reinterpret_cast<vector2D_type>(data[0]));
}

};

59

Explicit Specializations
template <typename type_struct>
struct ConverterVector2D<type_struct, 1, 2>
{

typedef typename type_struct::component_type component_type;
typedef typename type_struct::vector2D_type& vector2D_type;
typedef const typename type_struct::vector2D_type& const_vector2D_type;

static vector2D_type Convert(component_type *data)
{

return (reinterpret_cast<vector2D_type>(data[1]));
}

};

60

Explicit Specializations
template <typename type_struct>
struct ConverterVector2D<type_struct, 2, 3>
{

typedef typename type_struct::component_type component_type;
typedef typename type_struct::vector2D_type& vector2D_type;
typedef const typename type_struct::vector2D_type& const_vector2D_type;

static vector2D_type Convert(component_type *data)
{

return (reinterpret_cast<vector2D_type>(data[2]));
}

};

61

Conversion to Vector
● Notice that generic converter constructs

a new object
● But explicit specializations return references
● Difference captured in typedefs inside

converter
● Used by conversion operator

62

Conversion of Subvec2D
template <typename type_struct, int count, int index_x, int index_y>
class Subvec2D
{

...

operator typename
ConverterVector2D<type_struct, index_x, index_y>::vector2D_type(void)
{

return (ConverterVector2D<type_struct, index_x, index_y>
::Convert(data));

}

63

Overloaded Operators
● Arithmetic done with Subvec2D, Subvec3D,

Subvec4D
● Allows general swizzling of both operands
● Compiler automatically generates code for

all combinations actually used

64

Assignment Operator
template <typename type_struct, int count, int index_x, int index_y>
class Subvec2D
{

...
template <typename type, int cnt, int ind_x, int ind_y>
Subvec2D& operator =(const Subvec2D<type, cnt, ind_x, ind_y>& value)
{

data[index_x] = value.data[ind_x];
data[index_y] = value.data[ind_y];
return (*this);

}

65

Vector / Antivector Safeguard
● Note that anti template parameter must

be same for both operands in 3D/4D
● Can’t accidentally mix vectors and

antivectors

66

Operators for Full Vectors
● Also overload operators with full vector

operands
● Subvectors will be result of swizzles
● Otherwise, would have to write swizzles all

the time, even if components not reordered

67

Assignment of Full Vector
template <typename type_struct, int count, int index_x, int index_y>
class Subvec2D
{

...
Subvec2D& operator =(const vector2D_type& value)
{

data[index_x] = value.x;
data[index_y] = value.y;
return (*this);

}

68

Overloaded Operators
● Componentwise +, −, * work similarly
● Scalar *, / affect components identified by

index template parameters
● Nothing fancy going on

69

Unions
● Swizzle members implemented with union
● Holds all individual components
● Holds all possible subvectors

● May choose to exclude subvectors
with repeated components

70

Vec2D Class Template
template <typename type_struct>
class Vec2D
{

public:

union
{

Component<type_struct, 2, 0> x;
Component<type_struct, 2, 1> y;
Subvec2D<type_struct, 2, 0, 1> xy;
Subvec2D<type_struct, 2, 1, 0> yx;

};

71

Vec3D Union (15 members)
Component<type_struct, 3, 0> x;
Component<type_struct, 3, 1> y;
Component<type_struct, 3, 2> z;
Subvec2D<type_struct, 3, 0, 1> xy;
Subvec2D<type_struct, 3, 0, 2> xz;
Subvec2D<type_struct, 3, 1, 0> yx;
Subvec2D<type_struct, 3, 1, 2> yz;
Subvec2D<type_struct, 3, 2, 0> zx;
Subvec2D<type_struct, 3, 2, 1> zy;
Subvec3D<type_struct, anti, 3, 0, 1, 2> xyz;
Subvec3D<type_struct, anti, 3, 0, 2, 1> xzy;
Subvec3D<type_struct, anti, 3, 1, 0, 2> yxz;
Subvec3D<type_struct, anti, 3, 1, 2, 0> yzx;
Subvec3D<type_struct, anti, 3, 2, 0, 1> zxy;
Subvec3D<type_struct, anti, 3, 2, 1, 0> zyx;

72

Vec4D Union (64 members)
Component<type_struct, 4, 0> x;
Component<type_struct, 4, 1> y;
Component<type_struct, 4, 2> z;
Component<type_struct, 4, 3> w;
Subvec2D<type_struct, 4, 0, 1> xy;
Subvec2D<type_struct, 4, 0, 2> xz;
Subvec2D<type_struct, 4, 0, 3> xw;
Subvec2D<type_struct, 4, 1, 0> yx;
Subvec2D<type_struct, 4, 1, 2> yz;
Subvec2D<type_struct, 4, 1, 3> yw;
Subvec2D<type_struct, 4, 2, 0> zx;
Subvec2D<type_struct, 4, 2, 1> zy;
Subvec2D<type_struct, 4, 2, 3> zw;
Subvec2D<type_struct, 4, 3, 0> wx;
Subvec2D<type_struct, 4, 3, 1> wy;
Subvec2D<type_struct, 4, 3, 2> wz;
Subvec3D<type_struct, anti, 4, 0, 1, 2> xyz;
Subvec3D<type_struct, anti, 4, 0, 2, 1> xzy;
Subvec3D<type_struct, anti, 4, 0, 1, 3> xyw;
Subvec3D<type_struct, anti, 4, 0, 3, 1> xwy;
Subvec3D<type_struct, anti, 4, 0, 2, 3> xzw;
Subvec3D<type_struct, anti, 4, 0, 3, 2> xwz;
Subvec3D<type_struct, anti, 4, 1, 0, 2> yxz;
Subvec3D<type_struct, anti, 4, 1, 2, 0> yzx;

73

Subvec3D<type_struct, anti, 4, 1, 0, 3> yxw;
Subvec3D<type_struct, anti, 4, 1, 3, 0> ywx;
Subvec3D<type_struct, anti, 4, 1, 2, 3> yzw;
Subvec3D<type_struct, anti, 4, 1, 3, 2> ywz;
Subvec3D<type_struct, anti, 4, 2, 0, 1> zxy;
Subvec3D<type_struct, anti, 4, 2, 1, 0> zyx;
Subvec3D<type_struct, anti, 4, 2, 0, 3> zxw;
Subvec3D<type_struct, anti, 4, 2, 3, 0> zwx;
Subvec3D<type_struct, anti, 4, 2, 1, 3> zyw;
Subvec3D<type_struct, anti, 4, 2, 3, 1> zwy;
Subvec3D<type_struct, anti, 4, 3, 0, 1> wxy;
Subvec3D<type_struct, anti, 4, 3, 1, 0> wyx;
Subvec3D<type_struct, anti, 4, 3, 0, 2> wxz;
Subvec3D<type_struct, anti, 4, 3, 2, 0> wzx;
Subvec3D<type_struct, anti, 4, 3, 1, 2> wyz;
Subvec3D<type_struct, anti, 4, 3, 2, 1> wzy;
Subvec4D<type_struct, anti, 4, 0, 1, 2, 3> xyzw;
Subvec4D<type_struct, anti, 4, 0, 1, 3, 2> xywz;
Subvec4D<type_struct, anti, 4, 0, 2, 1, 3> xzyw;
Subvec4D<type_struct, anti, 4, 0, 2, 3, 1> xzwy;
Subvec4D<type_struct, anti, 4, 0, 3, 1, 2> xwyz;
Subvec4D<type_struct, anti, 4, 0, 3, 2, 1> xwzy;
Subvec4D<type_struct, anti, 4, 1, 0, 2, 3> yxzw;
Subvec4D<type_struct, anti, 4, 1, 0, 3, 2> yxwz;

Subvec4D<type_struct, anti, 4, 1, 2, 0, 3> yzxw;
Subvec4D<type_struct, anti, 4, 1, 2, 3, 0> yzwx;
Subvec4D<type_struct, anti, 4, 1, 3, 0, 2> ywxz;
Subvec4D<type_struct, anti, 4, 1, 3, 2, 0> ywzx;
Subvec4D<type_struct, anti, 4, 2, 0, 1, 3> zxyw;
Subvec4D<type_struct, anti, 4, 2, 0, 3, 1> zxwy;
Subvec4D<type_struct, anti, 4, 2, 1, 0, 3> zyxw;
Subvec4D<type_struct, anti, 4, 2, 1, 3, 0> zywx;
Subvec4D<type_struct, anti, 4, 2, 3, 0, 1> zwxy;
Subvec4D<type_struct, anti, 4, 2, 3, 1, 0> zwyx;
Subvec4D<type_struct, anti, 4, 3, 0, 1, 2> wxyz;
Subvec4D<type_struct, anti, 4, 3, 0, 2, 1> wxzy;
Subvec4D<type_struct, anti, 4, 3, 1, 0, 2> wyxz;
Subvec4D<type_struct, anti, 4, 3, 1, 2, 0> wyzx;
Subvec4D<type_struct, anti, 4, 3, 2, 0, 1> wzxy;
Subvec4D<type_struct, anti, 4, 3, 2, 1, 0> wzyx;

Repeated Components
● Rarely useful (I’ve never needed them)
● Adds a lot more members to union
● Don’t want them to be assignable
● Declare them const in the union

74

Final Types
● Components and subvectors are generally

internal implementation
● Rest of code doesn’t need to know

about them
● Use high-level classes for specific

mathematical types

75

Final Types
class Vector2D : public Vec2D<TypeVector2D>
class Vector3D : public Vec3D<TypeVector3D, false>
class Vector4D : public Vec4D<TypeVector4D, false>
class Bivector3D : public Vec3D<TypeBivector3D, true>
class Trivector4D : public Vec4D<TypeTrivector4D, true>

class Point3D : public Vector3D

class Integer2D : public Vec2D<TypeInteger2D>
class Integer3D : public Vec2D<TypeInteger3D>

76

Antivector Type Structure Example
struct TypeTrivector4D
{

typedef float component_type;
typedef Vector2D vector2D_type;
typedef Bivector3D vector3D_type;
typedef Trivector4D vector4D_type;

};

77

Matrices
● We can extend same concepts to matrices
● Subvectors can be used to extract

rows and columns
● Then they can be used in expressions without any

copying going on
● Compiler generates new functions to access

components in the right places
78

Matrices
● Submatrices of lower dimension

can be extracted
● Only one I’ve ever used is 3×3 upper-left part

of a 4×4 matrix
● Submatrix just indexes components inside

larger matrix, so no copying

79

Matrices
● We can “swizzle” a matrix to turn it

into its transpose
● Again, no copying
● And compiler generates new functions to perform

operations on transposed matrix

80

3D Submatrix Template
● Abstraction of 3×3 submatrix
● Type struct is one template parameter
● Entry locations defined by 9 more

template parameters

81

Submat3D Template
template <typename type_struct, int count, int index_00, int index_01,

int index_02, int index_10, int index_11, int index_12,
int index_20, int index_21, int index_22>

class Submat3D
{

public:

typedef typename type_struct::component_type component_type;
typedef typename type_struct::matrix3D_type matrix3D_type;

component_type data[count];
...

82

Submat4D Template
template <typename type_struct, int count, int index_00, int index_01, int index_02,

int index_03, int index_10, int index_11, int index_12, int index_13,
int index_20, int index_21, int index_22, int index_23, int index_30,
int index_31, int index_32, int index_33>

class Submat4D
{

public:

typedef typename type_struct::component_type component_type;
typedef typename type_struct::matrix4D_type matrix4D_type;

component_type data[count];
...

83

Unions
● Same concept as with vectors
● Holds all individual entries
● Holds set of columns and rows
● Holds submatrices, if needed
● Holds transpose

84

Columns and Rows
● Columns are vectors
● Rows are antivectors
● This is reflected in subvector types

85

Matrix Rows
● Noncontiguous components
● Still behaves like ordinary antivectors

to code doing operations with them
● Rows of 4×4 matrix are planes

86

Mat3D Union
Component<type_struct, 9, 0> m00;
Component<type_struct, 9, 1> m10;
Component<type_struct, 9, 2> m20;
Component<type_struct, 9, 3> m01;
Component<type_struct, 9, 4> m11;
Component<type_struct, 9, 5> m21;
Component<type_struct, 9, 6> m02;
Component<type_struct, 9, 7> m12;
Component<type_struct, 9, 8> m22;
Subvec3D<column_type_struct, false, 9, 0, 1, 2> col0;
Subvec3D<column_type_struct, false, 9, 3, 4, 5> col1;
Subvec3D<column_type_struct, false, 9, 6, 7, 8> col2;
Subvec3D<row_type_struct, true, 9, 0, 3, 6> row0;
Subvec3D<row_type_struct, true, 9, 1, 4, 7> row1;
Subvec3D<row_type_struct, true, 9, 2, 5, 8> row2;
Submat3D<type_struct, 9, 0, 3, 6, 1, 4, 7, 2, 5, 8> matrix;
Submat3D<type_struct, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8> transpose;

87

Mat4D Union
Component<type_struct, 16, 0> m00;
Component<type_struct, 16, 1> m10;
Component<type_struct, 16, 2> m20;
Component<type_struct, 16, 3> m30;
Component<type_struct, 16, 4> m01;
Component<type_struct, 16, 5> m11;
Component<type_struct, 16, 6> m21;
Component<type_struct, 16, 7> m31;
Component<type_struct, 16, 8> m02;
Component<type_struct, 16, 9> m12;
Component<type_struct, 16, 10> m22;
Component<type_struct, 16, 11> m32;
Component<type_struct, 16, 12> m03;
Component<type_struct, 16, 13> m13;
Component<type_struct, 16, 14> m23;
Component<type_struct, 16, 15> m33;

88

Subvec4D<column_type_struct, false, 16, 0, 1, 2, 3> col0;
Subvec4D<column_type_struct, false, 16, 4, 5, 6, 7> col1;
Subvec4D<column_type_struct, false, 16, 8, 9, 10, 11> col2;
Subvec4D<column_type_struct, false, 16, 12, 13, 14, 15> col3;
Subvec4D<row_type_struct, true, 16, 0, 4, 8, 12> row0;
Subvec4D<row_type_struct, true, 16, 1, 5, 9, 13> row1;
Subvec4D<row_type_struct, true, 16, 2, 6, 10, 14> row2;
Subvec4D<row_type_struct, true, 16, 3, 7, 11, 15> row3;
Submat3D<type_struct, 16, 0, 4, 8, 1, 5, 9, 2, 6, 10> matrix3D;
Submat3D<type_struct, 16, 0, 1, 2, 4, 5, 6, 8, 9, 10> transpose3D;

Submat4D<type_struct, 16, 0, 4, 8, 12, 1, 5, 9, 13,
2, 6, 10, 14, 3, 7, 11, 15> matrix;

Submat4D<type_struct, 16, 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15> transpose;

Final Types
● As with vectors, details of submatrices and

subvectors are internal
● Application works with high-level classes

89

Final Types
class Matrix3D : public Mat3D<TypeMatrix3D>
class Matrix4D : public Mat4D<TypeMatrix4D>

class Transform4D : public Matrix4D

90

Matrix Type Struct
● Contains component type
● Contains high-level matrix type

for conversions
● Contains type structs for columns and rows

● Used by subvector representations

91

Matrix Type Structs
struct TypeMatrix3D
{

typedef float component_type;
typedef Matrix3D matrix3D_type;
typedef TypeVector3D column_type_struct;
typedef TypeBivector3D row_type_struct;

};

92

Matrix Type Structs
struct TypeMatrix4D
{

typedef float component_type;
typedef Matrix3D matrix3D_type;
typedef Matrix4D matrix4D_type;
typedef TypeVector4D column_type_struct;
typedef TypeTrivector4D row_type_struct;

};

93

Matrix Operations
● Matrix-matrix products and matrix-vector

products defined in terms of submatrices
and subvectors

● Compiler can generate specialized functions
for any swizzled combinations

94

Normal Transformation
● Remember when M is orthogonal

● We can do this without making copy:

95

1 T−′ = =n nM nM

n2 = n1 * m.transpose;

Matrix Operations
● Could just declare matrix-matrix product

in header file
● 36 template parameters!

● Then define product in .cpp file
● Explicitly instantiate for unswizzled

matrices and transposes

96

Contact
● lengyel@terathon.com
● @EricLengyel on Twitter
● Expo floor, booth #2204

● Slides posted here after conference:
https://terathon.com/lengyel/

97

	Linear Algebra Upgraded��Eric Lengyel, Ph.D.�Terathon Software
	About the speaker
	About this talk
	About this talk
	About this talk
	About this talk
	Class Names
	Grassmann Algebra
	Grassmann Algebra
	Basic Vector
	Constructors
	Promotions
	Overloaded Operators
	Division by Scalar
	Dot and Cross Product
	Wedge and Antiwedge Product
	Wedge Product
	Points
	Points
	Points
	Point3D Class
	Point3D Class
	Point as Subclass
	Point Operations
	Wedge Product
	Conversion of Vector to Point
	Zero Type
	Promotion of Points
	Basic Matrix
	Matrices
	Vector Array
	Operator []
	Row or Column Vectors
	Row or Column Vectors
	Matrix Storage
	Operand Order
	Column Vectors
	Vectors and Antivectors
	Vectors and Antivectors
	Planes
	Transformation
	Transformation
	Transformation
	Normal Transformation
	Plane Transformation
	Swizzling
	Swizzling Examples
	Swizzling
	Type Structures
	Type Structures
	Component Template
	Component Template
	2D Subvector Template
	2D Subvector Template
	3D and 4D Subvectors
	Conversion to Vector
	Converter Templates
	ConverterVector2D Template
	Explicit Specializations
	Explicit Specializations
	Explicit Specializations
	Conversion to Vector
	Conversion of Subvec2D
	Overloaded Operators
	Assignment Operator
	Vector / Antivector Safeguard
	Operators for Full Vectors
	Assignment of Full Vector
	Overloaded Operators
	Unions
	Vec2D Class Template
	Vec3D Union (15 members)
	Vec4D Union (64 members)
	Repeated Components
	Final Types
	Final Types
	Antivector Type Structure Example
	Matrices
	Matrices
	Matrices
	3D Submatrix Template
	Submat3D Template
	Submat4D Template
	Unions
	Columns and Rows
	Matrix Rows
	Mat3D Union
	Mat4D Union
	Final Types
	Final Types
	Matrix Type Struct
	Matrix Type Structs
	Matrix Type Structs
	Matrix Operations
	Normal Transformation
	Matrix Operations
	Contact

