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About the speaker
● Working in game/graphics dev since 1994

● Previously at Sierra, Apple, Naughty Dog
● Current projects:

● Slug Library, C4 Engine, The 31st, FGED
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About this talk
● Vector / matrix implementation in C++

● Vectors, points, planes, lines, antivectors
● Swizzling (like shading languages)
● Matrix manipulation
● 2D, 3D, 4D
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About this talk
● Promoting mathematical correctness
● Providing zero-cost conveniences

● Vector swizzling: v1 = v2.zyx
● Row/column extraction: m.row1, m.col0
● Free transpose: v1 = m.transpose * v2
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About this talk
● Many ways to implement math library
● Many ways equally correct
● Purpose of this talk is to share my

experiences with code I’ve developed and 
refined over many years and give advice

● You are free to implement what you like
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About this talk
● Skipping obvious stuff

● Like overloading operator + for two vectors

● Focusing on things that are not common
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Class Names
● Vector2D, Vector3D, Vector4D, Point3D
● Matrix3D, Matrix4D, Transform4D
● Bivector3D (normals)
● Bivector4D (lines)
● Trivector4D (planes)
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Grassmann Algebra
● Foundations of Game Engine

Development, Volume 1

● “Fundamentals of Grassmann
Algebra” (GDC 2012)

● “Grassmann Algebra in Game
Development” (GDC 2014)
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Grassmann Algebra
● Thorough understanding not necessary

● Vector/antivector distinction most important

● Various facts stated throughout this talk
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Basic Vector
class Vector2D
{

public:

float x, y;

...
};
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class Vector4D
{

public:

float x, y, z, w;

...
};

class Vector3D
{

public:

float x, y, z;

...
};



Constructors
Vector3D() = default;

Vector3D(float a, float b, float c)
{

x = a; y = b; z = c;
}

Vector3D(const Vector3D& v)
{

x = v.x; y = v.y; z = v.z;
}
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Promotions
Vector3D(const Vector2D& v)
{

x = v.x;
y = v.y;
z = 0.0F;

}
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Vector4D(const Vector3D& v)
{

x = v.x;
y = v.y;
z = v.z;
w = 0.0F;

}



Overloaded Operators
● Obvious addition / subtraction
● Multiplication by scalar
● Division by scalar
● Multiplication of two vectors componentwise

● Consistent with shading languages
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Division by Scalar
Vector3D& operator /=(float s)
{

float t = 1.0F / s;
x *= t;
y *= t;
z *= t;
return (*this);

}
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Dot and Cross Product
● Recommend dot() and cross() functions
● Could overload * and % (or others)

● But this can get confusing
● Makes code hard to read
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Wedge and Antiwedge Product
● Could use wedge() function
● I prefer overloading ^ operator

● Have to deal with low operator precedence
● Just means using parentheses a lot

● Used for both wedge and antiwedge product
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Wedge Product
● Vector3D ^ Vector3D = Bivector3D

● Like cross product

● Vector3D ^ Bivector3D = scalar
● Like dot product
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Points
● Same components as vector
● But behaves differently
● w = 1 when promoted to 4D
● Translation included when multiplied

by 4×4 matrix
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Points
● Often, we just want point to be a vector

● Other times, we want to enforce point
used instead of vector

● Special case math for points
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Points
● What works:

● Make point a subclass of vector
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Point3D Class
class Point3D : public Vector3D
{

public:

Point3D() = default;
Point3D(float a, float b, float c) : Vector3D(a, b, c) {}
Point3D(const Point3D& p) : Vector3D(p) {}

};
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Point3D Class
● Point type can always be implicitly converted 

to vector type at no cost
● Can pass point to function accepting vector
● Can mix vectors and points in calculations
● Overload functions/operators where special 

behavior is needed
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Point as Subclass
● Point is specific type of vector
● Vector can’t be implicitly converted to point
● Function accepting a point must always have 

a point passed to it
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Point Operations
● Point + Point = Point
● Point − Point = Vector
● Point * Scalar = Point
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Wedge Product
● Point3D ^ Point3D = Bivector4D

● Two points make a line

● Point3D ^ Point3D ^ Point3D = Trivector4D
● Three points make a plane
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Conversion of Vector to Point
● Sometimes want a vector to be a point

● Rare for me, only 19 uses in 600K+ lines of code

● Create a “Zero” type to act as point at origin
● Add vector to origin to turn it into a point
● No casting, zero cost
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Zero Type
class Zero3DType {};

extern const Zero3DType Zero3D;

const Point3D& operator +(const Zero3DType&, const Vector3D& v)
{

return (reinterpret_cast<const Point3D&>(v));
}

Point3D p = Zero3D + (expression producing 3D vector);
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Promotion of Points
Vector4D(const Point2D& p)
{

x = p.x;
y = p.y;
z = 0.0F;
w = 1.0F;

}
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Vector4D(const Point3D& p)
{

x = p.x;
y = p.y;
z = p.z;
w = 1.0F;

}



Basic Matrix
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class Matrix3D
{

public:

float n[3][3];

...
};

class Matrix4D
{

public:

float n[4][4];

...
};



Matrices
● Think of matrix as array of vectors
● We want this storage order

● Column vectors → matrix is array of columns
● Row vectors → matrix is array of rows
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Vector Array
● Object-to-world

transform is
array of vectors
● World x = 1st vector
● World y = 2nd vector
● World z = 3rd vector
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Operator []
Vector3D& operator [](int index)
{

return (*reinterpret_cast<Vector3D *>(n[index]);
}

const Vector3D& operator [](int index) const
{

return (*reinterpret_cast<const Vector3D *>(n[index]);
}
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Row or Column Vectors
● Vectors can be thought of as

1×n row matrices
● Or vectors can be thought of as

n×1 column matrices
● Neither is more mathematically

correct than the other
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Row or Column Vectors
● Consistency is what matters
● Pick one convention and stick to it
● Everything works out the same
● But matrix-vector products will have 

operands in opposite orders
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Matrix Storage
● Row vectors → matrix is array of rows

● “Row-major” storage order

● Column vectors → matrix is array of columns
● “Column-major” storage order
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Operand Order
● Row vectors transformed by matrix on right

● Column vectors transformed by matrix on left
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Column Vectors
● I use column vectors
● Remainder of this talk uses column vectors
● Convention used by scientists and engineers
● Matrix composition and quaternion 

composition have same ordering
● Consistency is king
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Vectors and Antivectors
● Vectors are n×1 column matrices
● Antivectors are 1×n row matrices

● (Whichever you choose for vectors,
it’s the opposite for antivectors.)
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Vectors and Antivectors
● Vectors are ordinary directions

● Tangent, bitangent, velocity, force, etc.

● Antivectors are formed by cross products
● Normal, angular velocity, torque, etc.
● Bivectors in 3D, with planar orientation
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Planes
● Planes are 4D antivectors
● Wedge product of 3 homogeneous points
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Transformation
● Vector (column) is transformed as

● Antivector (row) is transformed as 
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Transformation
● Can enforce transformation rules by using 

different types for vectors / antivectors
● Implement operators only for valid products
● Can’t accidentally multiply normal or plane 

with matrix on the left
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Transformation
Vector3D operator *(const Matrix3D& m, const Vector3D& v);

Vector4D operator *(const Matrix4D& m, const Vector4D& v);

Bivector3D operator *(const Bivector3D& b, const Matrix3D& m);

Trivector4D operator *(const Trivector4D& t, const Matrix4D& m);
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Normal Transformation
● If 3×3 matrix M is orthogonal, M−1 = MT

● So don’t need inverse to transform normal:

● In this case, can treat normal like vector:
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Plane Transformation
● Can’t do same thing for plane f
● 4×4 matrix H generally not orthogonal
● Always need adjugate for correct transform:
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Swizzling
● Shading languages have swizzles
● Can rearrange components
● Can extract subvectors
● All we can do in C++ with our basic vector 

class is .x, .y, .z, etc.
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Swizzling Examples
Vector3D v;

v.xyz
v.zyx

v.xy
v.zx

...
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Swizzling
● Making this work requires some abstraction
● And some C++ templates
● But it can be done cleanly
● And it’s worth it, IMO
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Type Structures
● One for each mathematical entity

● Vector2D, Vector3D, Bivector3D, Matrix3D, etc.
● Holds type info about components

and subparts
● Used by templates
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Type Structures
struct TypeVector3D
{

typedef float component_type;
typedef Vector2D vector2D_type;
typedef Vector3D vector3D_type;

};
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Component Template
● Abstraction of vector component
● Type struct is a template parameter

● Important part is that the component
index is a template parameter
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Component Template
template <typename type_struct, int count, int index>
class Component
{

public:

typedef typename type_struct::component_type component_type;

component_type data[count];

operator component_type&(void) { return (data[index]); }
operator const component_type&(void) const { return (data[index]); }
...
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2D Subvector Template
● Abstraction of two components of n-D vector
● Type struct is again a template parameter

● New parameter: boolean value indicating
whether subvector is an antivector
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2D Subvector Template
template <typename type_struct, int count, int index_x, int index_y>
class Subvec2D
{

public:

typedef typename type_struct::component_type component_type;
typedef typename type_struct::vector2D_type vector2D_type;

component_type data[count];
...

54



3D and 4D Subvectors
● Similar to 2D subvector
● With more index template parameters
● Also with an “anti” template parameter to 

distinguish between vectors and antivectors
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Conversion to Vector
● Subvectors are generic set of components
● Need to be able to implicitly convert to 

vectors of same dimension
● When components are consecutive in 

memory, don’t want any copying
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Converter Templates
● Turns an n-D subvector into an n-D vector
● Used by conversion operators in subvector

class templates
● Explicit specializations handle cases when 

components are consecutive
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ConverterVector2D Template
template <typename type_struct, int index_x, int index_y>
struct ConverterVector2D
{

typedef typename type_struct::component_type component_type;
typedef typename type_struct::vector2D_type vector2D_type;
typedef typename type_struct::vector2D_type const_vector2D_type;

static vector2D_type Convert(component_type *data)
{

return (vector2D_type(data[index_x], data[index_y]));
}

};
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Explicit Specializations
template <typename type_struct>
struct ConverterVector2D<type_struct, 0, 1>
{

typedef typename type_struct::component_type component_type;
typedef typename type_struct::vector2D_type& vector2D_type;
typedef const typename type_struct::vector2D_type& const_vector2D_type;

static vector2D_type Convert(component_type *data)
{

return (reinterpret_cast<vector2D_type>(data[0]));
}

};
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Explicit Specializations
template <typename type_struct>
struct ConverterVector2D<type_struct, 1, 2>
{

typedef typename type_struct::component_type component_type;
typedef typename type_struct::vector2D_type& vector2D_type;
typedef const typename type_struct::vector2D_type& const_vector2D_type;

static vector2D_type Convert(component_type *data)
{

return (reinterpret_cast<vector2D_type>(data[1]));
}

};
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Explicit Specializations
template <typename type_struct>
struct ConverterVector2D<type_struct, 2, 3>
{

typedef typename type_struct::component_type component_type;
typedef typename type_struct::vector2D_type& vector2D_type;
typedef const typename type_struct::vector2D_type& const_vector2D_type;

static vector2D_type Convert(component_type *data)
{

return (reinterpret_cast<vector2D_type>(data[2]));
}

};
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Conversion to Vector
● Notice that generic converter constructs

a new object
● But explicit specializations return references
● Difference captured in typedefs inside 

converter
● Used by conversion operator
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Conversion of Subvec2D
template <typename type_struct, int count, int index_x, int index_y>
class Subvec2D
{

...

operator typename
ConverterVector2D<type_struct, index_x, index_y>::vector2D_type(void)
{

return (ConverterVector2D<type_struct, index_x, index_y>
::Convert(data));

}
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Overloaded Operators
● Arithmetic done with Subvec2D, Subvec3D, 

Subvec4D
● Allows general swizzling of both operands
● Compiler automatically generates code for 

all combinations actually used
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Assignment Operator
template <typename type_struct, int count, int index_x, int index_y>
class Subvec2D
{

...
template <typename type, int cnt, int ind_x, int ind_y>
Subvec2D& operator =(const Subvec2D<type, cnt, ind_x, ind_y>& value)
{

data[index_x] = value.data[ind_x];
data[index_y] = value.data[ind_y];
return (*this);

}
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Vector / Antivector Safeguard
● Note that anti template parameter must

be same for both operands in 3D/4D
● Can’t accidentally mix vectors and 

antivectors
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Operators for Full Vectors
● Also overload operators with full vector 

operands
● Subvectors will be result of swizzles
● Otherwise, would have to write swizzles all 

the time, even if components not reordered
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Assignment of Full Vector
template <typename type_struct, int count, int index_x, int index_y>
class Subvec2D
{

...
Subvec2D& operator =(const vector2D_type& value)
{

data[index_x] = value.x;
data[index_y] = value.y;
return (*this);

}
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Overloaded Operators
● Componentwise +, −, * work similarly
● Scalar *, / affect components identified by 

index template parameters
● Nothing fancy going on
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Unions
● Swizzle members implemented with union
● Holds all individual components
● Holds all possible subvectors

● May choose to exclude subvectors
with repeated components
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Vec2D Class Template
template <typename type_struct>
class Vec2D
{

public:

union
{

Component<type_struct, 2, 0> x;
Component<type_struct, 2, 1> y;
Subvec2D<type_struct, 2, 0, 1> xy;
Subvec2D<type_struct, 2, 1, 0> yx;

};
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Vec3D Union (15 members)
Component<type_struct, 3, 0> x;
Component<type_struct, 3, 1> y;
Component<type_struct, 3, 2> z;
Subvec2D<type_struct, 3, 0, 1> xy;
Subvec2D<type_struct, 3, 0, 2> xz;
Subvec2D<type_struct, 3, 1, 0> yx;
Subvec2D<type_struct, 3, 1, 2> yz;
Subvec2D<type_struct, 3, 2, 0> zx;
Subvec2D<type_struct, 3, 2, 1> zy;
Subvec3D<type_struct, anti, 3, 0, 1, 2> xyz;
Subvec3D<type_struct, anti, 3, 0, 2, 1> xzy;
Subvec3D<type_struct, anti, 3, 1, 0, 2> yxz;
Subvec3D<type_struct, anti, 3, 1, 2, 0> yzx;
Subvec3D<type_struct, anti, 3, 2, 0, 1> zxy;
Subvec3D<type_struct, anti, 3, 2, 1, 0> zyx;
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Vec4D Union (64 members)
Component<type_struct, 4, 0>             x;
Component<type_struct, 4, 1>             y;
Component<type_struct, 4, 2>             z;
Component<type_struct, 4, 3>             w;
Subvec2D<type_struct, 4, 0, 1>           xy;
Subvec2D<type_struct, 4, 0, 2>           xz;
Subvec2D<type_struct, 4, 0, 3>           xw;
Subvec2D<type_struct, 4, 1, 0>           yx;
Subvec2D<type_struct, 4, 1, 2>           yz;
Subvec2D<type_struct, 4, 1, 3>           yw;
Subvec2D<type_struct, 4, 2, 0>           zx;
Subvec2D<type_struct, 4, 2, 1>           zy;
Subvec2D<type_struct, 4, 2, 3>           zw;
Subvec2D<type_struct, 4, 3, 0>           wx;
Subvec2D<type_struct, 4, 3, 1>           wy;
Subvec2D<type_struct, 4, 3, 2>           wz;
Subvec3D<type_struct, anti, 4, 0, 1, 2>  xyz;
Subvec3D<type_struct, anti, 4, 0, 2, 1>  xzy;
Subvec3D<type_struct, anti, 4, 0, 1, 3>  xyw;
Subvec3D<type_struct, anti, 4, 0, 3, 1>  xwy;
Subvec3D<type_struct, anti, 4, 0, 2, 3>  xzw;
Subvec3D<type_struct, anti, 4, 0, 3, 2>  xwz;
Subvec3D<type_struct, anti, 4, 1, 0, 2>  yxz;
Subvec3D<type_struct, anti, 4, 1, 2, 0>  yzx;

73

Subvec3D<type_struct, anti, 4, 1, 0, 3>     yxw;
Subvec3D<type_struct, anti, 4, 1, 3, 0>     ywx;
Subvec3D<type_struct, anti, 4, 1, 2, 3>     yzw;
Subvec3D<type_struct, anti, 4, 1, 3, 2>     ywz;
Subvec3D<type_struct, anti, 4, 2, 0, 1>     zxy;
Subvec3D<type_struct, anti, 4, 2, 1, 0>     zyx;
Subvec3D<type_struct, anti, 4, 2, 0, 3>     zxw;
Subvec3D<type_struct, anti, 4, 2, 3, 0>     zwx;
Subvec3D<type_struct, anti, 4, 2, 1, 3>     zyw;
Subvec3D<type_struct, anti, 4, 2, 3, 1>     zwy;
Subvec3D<type_struct, anti, 4, 3, 0, 1>     wxy;
Subvec3D<type_struct, anti, 4, 3, 1, 0>     wyx;
Subvec3D<type_struct, anti, 4, 3, 0, 2>     wxz;
Subvec3D<type_struct, anti, 4, 3, 2, 0>     wzx;
Subvec3D<type_struct, anti, 4, 3, 1, 2>     wyz;
Subvec3D<type_struct, anti, 4, 3, 2, 1>     wzy;
Subvec4D<type_struct, anti, 4, 0, 1, 2, 3>  xyzw;
Subvec4D<type_struct, anti, 4, 0, 1, 3, 2>  xywz;
Subvec4D<type_struct, anti, 4, 0, 2, 1, 3>  xzyw;
Subvec4D<type_struct, anti, 4, 0, 2, 3, 1>  xzwy;
Subvec4D<type_struct, anti, 4, 0, 3, 1, 2>  xwyz;
Subvec4D<type_struct, anti, 4, 0, 3, 2, 1>  xwzy;
Subvec4D<type_struct, anti, 4, 1, 0, 2, 3>  yxzw;
Subvec4D<type_struct, anti, 4, 1, 0, 3, 2>  yxwz;

Subvec4D<type_struct, anti, 4, 1, 2, 0, 3>  yzxw;
Subvec4D<type_struct, anti, 4, 1, 2, 3, 0>  yzwx;
Subvec4D<type_struct, anti, 4, 1, 3, 0, 2>  ywxz;
Subvec4D<type_struct, anti, 4, 1, 3, 2, 0>  ywzx;
Subvec4D<type_struct, anti, 4, 2, 0, 1, 3>  zxyw;
Subvec4D<type_struct, anti, 4, 2, 0, 3, 1>  zxwy;
Subvec4D<type_struct, anti, 4, 2, 1, 0, 3>  zyxw;
Subvec4D<type_struct, anti, 4, 2, 1, 3, 0>  zywx;
Subvec4D<type_struct, anti, 4, 2, 3, 0, 1>  zwxy;
Subvec4D<type_struct, anti, 4, 2, 3, 1, 0>  zwyx;
Subvec4D<type_struct, anti, 4, 3, 0, 1, 2>  wxyz;
Subvec4D<type_struct, anti, 4, 3, 0, 2, 1>  wxzy;
Subvec4D<type_struct, anti, 4, 3, 1, 0, 2>  wyxz;
Subvec4D<type_struct, anti, 4, 3, 1, 2, 0>  wyzx;
Subvec4D<type_struct, anti, 4, 3, 2, 0, 1>  wzxy;
Subvec4D<type_struct, anti, 4, 3, 2, 1, 0>  wzyx;



Repeated Components
● Rarely useful (I’ve never needed them)
● Adds a lot more members to union
● Don’t want them to be assignable
● Declare them const in the union

74



Final Types
● Components and subvectors are generally 

internal implementation
● Rest of code doesn’t need to know

about them
● Use high-level classes for specific 

mathematical types
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Final Types
class Vector2D : public Vec2D<TypeVector2D>
class Vector3D : public Vec3D<TypeVector3D, false>
class Vector4D : public Vec4D<TypeVector4D, false>
class Bivector3D : public Vec3D<TypeBivector3D, true>
class Trivector4D : public Vec4D<TypeTrivector4D, true>

class Point3D : public Vector3D

class Integer2D : public Vec2D<TypeInteger2D>
class Integer3D : public Vec2D<TypeInteger3D>
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Antivector Type Structure Example
struct TypeTrivector4D
{

typedef float component_type;
typedef Vector2D vector2D_type;
typedef Bivector3D vector3D_type;
typedef Trivector4D vector4D_type;

};
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Matrices
● We can extend same concepts to matrices
● Subvectors can be used to extract

rows and columns
● Then they can be used in expressions without any 

copying going on
● Compiler generates new functions to access 

components in the right places
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Matrices
● Submatrices of lower dimension

can be extracted
● Only one I’ve ever used is 3×3 upper-left part

of a 4×4 matrix
● Submatrix just indexes components inside

larger matrix, so no copying
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Matrices
● We can “swizzle” a matrix to turn it

into its transpose
● Again, no copying
● And compiler generates new functions to perform 

operations on transposed matrix
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3D Submatrix Template
● Abstraction of 3×3 submatrix
● Type struct is one template parameter
● Entry locations defined by 9 more

template parameters
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Submat3D Template
template <typename type_struct, int count, int index_00, int index_01,

int index_02, int index_10, int index_11, int index_12,
int index_20, int index_21, int index_22>

class Submat3D
{

public:

typedef typename type_struct::component_type component_type;
typedef typename type_struct::matrix3D_type matrix3D_type;

component_type data[count];
...
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Submat4D Template
template <typename type_struct, int count, int index_00, int index_01, int index_02,

int index_03, int index_10, int index_11, int index_12, int index_13,
int index_20, int index_21, int index_22, int index_23, int index_30,
int index_31, int index_32, int index_33>

class Submat4D
{

public:

typedef typename type_struct::component_type component_type;
typedef typename type_struct::matrix4D_type matrix4D_type;

component_type data[count];
...
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Unions
● Same concept as with vectors
● Holds all individual entries
● Holds set of columns and rows
● Holds submatrices, if needed
● Holds transpose
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Columns and Rows
● Columns are vectors
● Rows are antivectors
● This is reflected in subvector types
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Matrix Rows
● Noncontiguous components
● Still behaves like ordinary antivectors

to code doing operations with them
● Rows of 4×4 matrix are planes
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Mat3D Union
Component<type_struct, 9, 0> m00;
Component<type_struct, 9, 1> m10;
Component<type_struct, 9, 2> m20;
Component<type_struct, 9, 3> m01;
Component<type_struct, 9, 4> m11;
Component<type_struct, 9, 5> m21;
Component<type_struct, 9, 6> m02;
Component<type_struct, 9, 7> m12;
Component<type_struct, 9, 8> m22;
Subvec3D<column_type_struct, false, 9, 0, 1, 2> col0;
Subvec3D<column_type_struct, false, 9, 3, 4, 5> col1;
Subvec3D<column_type_struct, false, 9, 6, 7, 8> col2;
Subvec3D<row_type_struct, true, 9, 0, 3, 6> row0;
Subvec3D<row_type_struct, true, 9, 1, 4, 7> row1;
Subvec3D<row_type_struct, true, 9, 2, 5, 8> row2;
Submat3D<type_struct, 9, 0, 3, 6, 1, 4, 7, 2, 5, 8> matrix;
Submat3D<type_struct, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8> transpose;
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Mat4D Union
Component<type_struct, 16, 0> m00;
Component<type_struct, 16, 1> m10;
Component<type_struct, 16, 2> m20;
Component<type_struct, 16, 3> m30;
Component<type_struct, 16, 4> m01;
Component<type_struct, 16, 5> m11;
Component<type_struct, 16, 6> m21;
Component<type_struct, 16, 7> m31;
Component<type_struct, 16, 8> m02;
Component<type_struct, 16, 9> m12;
Component<type_struct, 16, 10> m22;
Component<type_struct, 16, 11> m32;
Component<type_struct, 16, 12> m03;
Component<type_struct, 16, 13> m13;
Component<type_struct, 16, 14> m23;
Component<type_struct, 16, 15> m33;
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Subvec4D<column_type_struct, false, 16, 0, 1, 2, 3>      col0;
Subvec4D<column_type_struct, false, 16, 4, 5, 6, 7>      col1;
Subvec4D<column_type_struct, false, 16, 8, 9, 10, 11>    col2;
Subvec4D<column_type_struct, false, 16, 12, 13, 14, 15>  col3;
Subvec4D<row_type_struct, true, 16, 0, 4, 8, 12>         row0;
Subvec4D<row_type_struct, true, 16, 1, 5, 9, 13>         row1;
Subvec4D<row_type_struct, true, 16, 2, 6, 10, 14>        row2;
Subvec4D<row_type_struct, true, 16, 3, 7, 11, 15>        row3;
Submat3D<type_struct, 16, 0, 4, 8, 1, 5, 9, 2, 6, 10>    matrix3D;
Submat3D<type_struct, 16, 0, 1, 2, 4, 5, 6, 8, 9, 10>    transpose3D;

Submat4D<type_struct, 16, 0, 4, 8, 12, 1, 5, 9, 13,
2, 6, 10, 14, 3, 7, 11, 15>                          matrix;

Submat4D<type_struct, 16, 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15>                        transpose;



Final Types
● As with vectors, details of submatrices and 

subvectors are internal
● Application works with high-level classes
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Final Types
class Matrix3D : public Mat3D<TypeMatrix3D>
class Matrix4D : public Mat4D<TypeMatrix4D>

class Transform4D : public Matrix4D
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Matrix Type Struct
● Contains component type
● Contains high-level matrix type

for conversions
● Contains type structs for columns and rows

● Used by subvector representations
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Matrix Type Structs
struct TypeMatrix3D
{

typedef float component_type;
typedef Matrix3D matrix3D_type;
typedef TypeVector3D column_type_struct;
typedef TypeBivector3D row_type_struct;

};
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Matrix Type Structs
struct TypeMatrix4D
{

typedef float component_type;
typedef Matrix3D matrix3D_type;
typedef Matrix4D matrix4D_type;
typedef TypeVector4D column_type_struct;
typedef TypeTrivector4D row_type_struct;

};
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Matrix Operations
● Matrix-matrix products and matrix-vector 

products defined in terms of submatrices 
and subvectors

● Compiler can generate specialized functions 
for any swizzled combinations
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Normal Transformation
● Remember when M is orthogonal

● We can do this without making copy:
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1 T−′ = =n nM nM

n2 = n1 * m.transpose;



Matrix Operations
● Could just declare matrix-matrix product

in header file
● 36 template parameters!

● Then define product in .cpp file
● Explicitly instantiate for unswizzled

matrices and transposes
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Contact
● lengyel@terathon.com
● @EricLengyel on Twitter
● Expo floor, booth #2204

● Slides posted here after conference:
https://terathon.com/lengyel/
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