GDC

New Developments in Projective Geometric Algebra

Eric Lengyel, Ph.D. Terathon Software

GAME DEVELOPERS CONFERENCE | July 19-23, 2021

About the Speaker

- Working in game/graphics dev since 1994
 - Previously at Sierra, Apple, Naughty Dog

- Current projects:
 - Slug Library, C4 Engine, The 31st, FGED, OpenGEX

	Specification Version 2.0
٢	
	Deiake
	Trial and and

More Information

projectivegeometricalgebra.org

Past GDC sessions on Grassmann algebra

 Foundations of Game Engine Development, Volume 1: Mathematics

Outline

- Take a look at conventional math
 - Pieces of a puzzle, but big picture missing
- Review of Grassmann algebra
 - With some new stuff added
- New developments in geometric algebra
 - Antiproducts, geometric norms, motors, flectors

Homogeneous Coordinates

- Add w coordinate to make 4D vector
- Points have $w \neq 0$
- Directions have w = 0
- Allows rotation and translation to be combined in a single 4×4 matrix:

$$\mathbf{p'} = \begin{bmatrix} R_{00} & R_{01} & R_{02} & T_x \\ R_{10} & R_{11} & R_{12} & T_y \\ R_{20} & R_{21} & R_{22} & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ p_w \end{bmatrix}$$

GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Homogeneous Coordinates

- "Homogeneous" means any scalar multiple of a vector has the same geometric meaning
- Project into 3D space by intersecting with the plane w = 1

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

 $\mathbf{p} = (p_x, p_v, p_z, p_w)$

 \mathbf{p}/p_{w}

Implicit Planes

- Four-component quantity (n_x, n_y, n_z, d)
- n is normal vector
- d is signed distance from origin, scaled by length of **n**

- Planes are also homogeneous
 - Any scalar multiple is same plane

Implicit Planes

Plücker Coordinates

Parametric form of line:

$$\mathbf{L}(t) = \mathbf{p} + t\mathbf{v}$$

Plücker coordinates give implicit line:

$$\mathbf{v} = \mathbf{q} - \mathbf{p}$$
$$\mathbf{m} = \mathbf{p} \times \mathbf{q}$$

Plücker Coordinates

- v is the direction of the line
- m is the moment of the line
- Always true that $\mathbf{v} \cdot \mathbf{m} = 0$
- Representation contains no information about the points used to create the line

Direction and Moment

Plücker Coordinates

- Lots of formulas
 - But little explanation

- Point $(\mathbf{p} | w)$
- Plane $[\mathbf{n} | d]$
- Line $\{v | m\}$

	Formula	Description
Α	$\{\mathbf{v} \mathbf{p} imes \mathbf{v}\}$	Line through point \mathbf{p} with direction \mathbf{v} .
В	$\{\mathbf{p}_2 - \mathbf{p}_1 \mathbf{p}_1 \times \mathbf{p}_2\}$	Line through two points \mathbf{p}_1 and \mathbf{p}_2 .
С	{ p 0 }	Line through point \mathbf{p} and origin.
D	$\{w_1\mathbf{p}_2 - w_2\mathbf{p}_1 \mathbf{p}_1 \times \mathbf{p}_2\}$	Line through two homogeneous points $(\mathbf{p}_1 w_1)$ and $(\mathbf{p}_2 w_2)$.
Е	$\{\mathbf{n}_1 \times \mathbf{n}_2 d_1 \mathbf{n}_2 - d_2 \mathbf{n}_1\}$	Line where two planes $[\mathbf{n}_1 d_1]$ and $[\mathbf{n}_2 d_2]$ intersect.
F	$(\mathbf{m} \times \mathbf{n} + d\mathbf{v} -\mathbf{n} \cdot \mathbf{v})$	Homogeneous point where line $\{\mathbf{v} \mathbf{m}\}$ intersects plane $[\mathbf{n} d]$.
G	$(\mathbf{v} \times \mathbf{m} v^2)$	Homogeneous point closest to origin on line $\{v m\}$.
Н	$\left(-d\mathbf{n} n^2\right)$	Homogeneous point closest to origin on plane $[\mathbf{n} d]$.
Ι	$\begin{bmatrix} \mathbf{v} \times \mathbf{u} \mid -\mathbf{u} \cdot \mathbf{m} \end{bmatrix}$	Plane containing line $\{v \mid m\}$ and parallel to direction u .
J	$\begin{bmatrix} \mathbf{v} \times \mathbf{p} + \mathbf{m} \mid -\mathbf{p} \cdot \mathbf{m} \end{bmatrix}$	Plane containing line $\{\mathbf{v} \mathbf{m}\}$ and point p .
K	[m 0]	Plane containing line $\{v m\}$ and origin.
L	$\left[\mathbf{v}\times\mathbf{p}+w\mathbf{m} -\mathbf{p}\cdot\mathbf{m}\right]$	Plane containing line $\{\mathbf{v} \mathbf{m}\}$ and homogeneous point $(\mathbf{p} w)$.
Μ	$\left[\mathbf{m}\times\mathbf{v} m^{2}\right]$	Plane farthest from origin containing line $\{v m\}$.
Ν	$\left[-w\mathbf{p} \mid p^2\right]$	Plane farthest from origin containing point $(\mathbf{p} w)$.
0	$\frac{ \mathbf{v}_1 \cdot \mathbf{m}_2 + \mathbf{v}_2 \cdot \mathbf{m}_1 }{\ \mathbf{v}_1 \times \mathbf{v}_2\ }$	Distance between two lines $\{\mathbf{v}_1 \mathbf{m}_1\}$ and $\{\mathbf{v}_2 \mathbf{m}_2\}$.
Р	$\frac{\ \mathbf{v} \times \mathbf{p} + \mathbf{m}\ }{\ \mathbf{v}\ }$	Distance from line $\{\mathbf{v} \mathbf{m}\}$ to point p .
Q	$\frac{\ \mathbf{m}\ }{\ \mathbf{v}\ }$	Distance from line $\{\mathbf{v} \mathbf{m}\}$ to origin.
R	$\frac{ \mathbf{n} \cdot \mathbf{p} + d }{\ \mathbf{n}\ }$	Distance from plane $[\mathbf{n} d]$ to point p .
S	$\frac{ d }{\ \mathbf{n}\ }$	Distance from plane $[\mathbf{n} d]$ to origin.

Table from Foundations of Game Engine Development, Volume 1: Mathematics, Section 3.5.2.

Encodes arbitrary rotation about origin:

$$\mathbf{q} = \cos \phi + \mathbf{a} \sin \phi$$

• This is a rotation through the angle 2ϕ about the unit-length axis a.

Quaternions often written as

$$\mathbf{q} = w + x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

Conjugate negates "imaginary" parts:

$$\tilde{\mathbf{q}} = w - x\mathbf{i} - y\mathbf{j} - z\mathbf{k}$$

• Units i, j, and k multiply as follows:

• A vector v is rotated by the sandwich product:

$$\mathbf{v}' = \mathbf{q}\mathbf{v}\tilde{\mathbf{q}}$$

where v is regarded as the quaternion

$$\mathbf{v} = \mathbf{v}_x \mathbf{i} + \mathbf{v}_y \mathbf{j} + \mathbf{v}_z \mathbf{k}$$

Dual Quaternions

- Quaternions can rotate only about the origin
- They cannot handle translations
- Just like a 3×3 matrix

- Dual quaternions incorporate translations
- This also allows rotation about arbitrary lines
- Analogous to 4×4 matrices

Dual Quaternions

 Dual quaternion conventionally written as a pair of quaternions:

 $\mathbf{q}_{r} + \mathcal{E}\mathbf{q}_{d}$

- **q**_r is the real part
- **q**_d is the dual part
- ε squares to zero: $\varepsilon^2 = 0$

Dual Quaternions

• A point **p** is transformed by a dual quaternion by first writing **p** as

$$\mathbf{p} = 1 + \varepsilon \mathbf{i} p_x + \varepsilon \mathbf{j} p_y + \varepsilon \mathbf{k} p_z$$

• Then, the sandwich product is applied:

 $\mathbf{p}' = (\mathbf{q}_{r} + \varepsilon \mathbf{q}_{d})(1 + \varepsilon \mathbf{i} p_{x} + \varepsilon \mathbf{j} p_{v} + \varepsilon \mathbf{k} p_{z})(\tilde{\mathbf{q}}_{r} + \varepsilon \tilde{\mathbf{q}}_{d})$

Hacks!

- The dual quaternion transformation technique is an ugly hack
 - We will see that points are being cast to translation operators, transformed, and then cast back to points
- Quaternion rotations are a lesser hack, but still a hack
 - Vectors are being cast to bivectors

Hacks!

- Conventional dual quaternion methods do not handle other types of objects
 - Like lines and planes

 We are going to fix this and fill in some giant holes in the theory

What About Reflections?

- Dual quaternions give us rotations and translations
- The full set of Euclidean isometries includes improper transformations
 - Reflections
 - Inversions
 - Transflections
 - Rotoreflections

Proper Euclidean Isometries

General screw motion

Improper Euclidean Isometries

Projective Geometric Algebra (PGA)

A four-dimensional projective space

- Point, line, and plane representations
 - With operations for combining in various ways
- Natural operations for all Euclidean isometries
 - Works with everything in the algebra
 - Both proper and improper transformations

Grassmann Algebra

- Also called exterior algebra
- Contains everything in the geometric algebra

- Fundamental geometric operations
 - Combine geometries with join and meet operations
 - Perform projection of one geometry onto another

Isometries are part of full geometric algebra

Wedge Product

- Also known as exterior product
 - Grassmann called it progressive combinatorial product

• Written with upward wedge:

$\mathbf{a} \wedge \mathbf{b}$

• Read as "a wedge b"

Wedge Product

• The square of a vector is always zero: $\mathbf{v} \wedge \mathbf{v} = \mathbf{0}$

This implies that vectors anticommute:

$$(\mathbf{a} + \mathbf{b}) \wedge (\mathbf{a} + \mathbf{b}) = 0$$
$$\mathbf{a} \wedge \mathbf{b} + \mathbf{b} \wedge \mathbf{a} = 0$$
$$\mathbf{a} \wedge \mathbf{b} = -\mathbf{b} \wedge \mathbf{a}$$

Bivectors

- Wedge product of two vectors is a "bivector"
 - Distinct from scalar or vector
 - Represents an oriented 2D area
 - Whereas a vector represents an oriented 1D direction

Bivectors

A bivector is two directions and a magnitude

Trivectors

- Wedge product of three vectors is a "trivector"
 - Another distinct type of object
 - Represents an oriented 3D volume
 - Three directions and a magnitude

Trivectors

Basis Elements in 4D Space

• Four basis vectors: **e**₁, **e**₂, **e**₃, **e**₄

• Six basis bivectors:

• Four basis trivectors: $e_{234}, e_{314}, e_{124}, e_{321}$

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

$e_{41}, e_{42}, e_{43}, e_{23}, e_{31}, e_{12}$

Antivectors

 Vectors use basis elements having one dimension each:

$x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3 + w\mathbf{e}_4$

 Antivectors use basis elements having all except one dimension each:

$$x\mathbf{e}_{234} + y\mathbf{e}_{314} + z\mathbf{e}_{124} + w\mathbf{e}_{321}$$

Scalars and Antiscalars

• There are two subspaces of single-component quantities, called scalars and antiscalars

Scalars include no dimensions of space

Antiscalars include all dimensions of space

GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Scalars and Antiscalars

 We represent the scalar basis element by a bold number one: 1

 We represent the antiscalar basis element by a blackboard bold number one: 1

$$\mathbb{1} = \mathbf{e}_1 \wedge \mathbf{e}_2 \wedge \mathbf{e}_3 \wedge \mathbf{e}_4$$

"Anti-one"

Grade and Antigrade

• The grade of an element is the number of dimensions used by its components

• The antigrade of an element is the number of dimensions **not** used by its components

 These, of course, always sum to the total dimension of the algebra

Basis Elements

Туре	Basis Elements	/ Antigrade	
Scalar	1	0 / 4	
	\mathbf{e}_1		
Vactors	e ₂	1/3	
vectors	e ₃		
	e ₄		
	$\mathbf{e}_{23} = \mathbf{e}_2 \wedge \mathbf{e}_3$		
	$\mathbf{e}_{31} = \mathbf{e}_3 \wedge \mathbf{e}_1$		
Discontant	$\mathbf{e}_{12} = \mathbf{e}_1 \wedge \mathbf{e}_2$		
Bivectors	$\mathbf{e}_{43} = \mathbf{e}_4 \wedge \mathbf{e}_3$		
	$\mathbf{e}_{42} = \mathbf{e}_4 \wedge \mathbf{e}_2$		
	$\mathbf{e}_{41} = \mathbf{e}_4 \wedge \mathbf{e}_1$		
	$\mathbf{e}_{321} = \mathbf{e}_3 \wedge \mathbf{e}_2 \wedge \mathbf{e}_1$		
Trivectors /	$\mathbf{e}_{124} = \mathbf{e}_1 \wedge \mathbf{e}_2 \wedge \mathbf{e}_4$	2 / 1	
Antivectors	$\mathbf{e}_{314} = \mathbf{e}_3 \wedge \mathbf{e}_1 \wedge \mathbf{e}_4$	5/1	
	$\mathbf{e}_{234} = \mathbf{e}_2 \wedge \mathbf{e}_3 \wedge \mathbf{e}_4$		
Antiscalar	$\mathbb{1} = \mathbf{e}_1 \wedge \mathbf{e}_2 \wedge \mathbf{e}_3 \wedge \mathbf{e}_4$	4 / 0	

Homogeneous Point

Ordinary vector

$\mathbf{p} = p_x \mathbf{e}_1 + p_y \mathbf{e}_2 + p_z \mathbf{e}_3 + p_w \mathbf{e}_4$

Homogeneous Point

 Projection of 1D vector into subspace at w = 1 is a 0D point

Point at Infinity

• If w coordinate is zero, then vector represents a point at infinity in the (x, y, z) direction

Each point at infinity exists in one direction

Homogeneous Line

Wedge product of two points is a bivector

$$\mathbf{p} \wedge \mathbf{q} = (q_x p_w - p_x q_w) \mathbf{e}_{41} + (q_y p_w - p_y q_w) \mathbf{e}_{42} - (p_y q_z - p_z q_y) \mathbf{e}_{23} + (p_z q_x - p_x q_z) \mathbf{e}_{31} + (p_z q_z - p_z q_y) \mathbf{e}_{23} + (p_z q_x - p_z q_z) \mathbf{e}_{31} + (p_z q_z - p_z$$

$$\mathbf{L} = v_x \mathbf{e}_{41} + v_y \mathbf{e}_{42} + v_z \mathbf{e}_{43} + m_x \mathbf{e}_{23} + m_y \mathbf{e}_{43}$$

Direction Mome

 $+(q_z p_w - p_z q_w) \mathbf{e}_{43}$ $(p_x q_v - p_v q_x) \mathbf{e}_{12}$

$m_{31} + m_z e_{12}$

ent

Homogeneous Line

 Projection of 2D bivector into subspace at w = 1 is a 1D line

Line at Infinity

 If direction part is zero, then line lies at infinity in directions perpendicular to moment

• Each line at infinity exists in a plane of directions

Line at Infinity

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Homogeneous Plane

Wedge product of three points is a trivector

$$\mathbf{f} = f_x \mathbf{e}_{234} + f_y \mathbf{e}_{314} + f_z \mathbf{e}_{124} + f_w \mathbf{e}_{124}$$

Normal

e₃₂₁

Homogeneous Plane

 Projection of 3D trivector into subspace at w = 1 is a 2D plane

Plane at Infinity

- There is one plane at infinity
 - Just like there is one point at the origin
 - These are duals of each other

The plane at infinity exists in all directions

GOC GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

- Components of any object can be separated into two parts
- The "bulk" consists of all components that do not have a factor of e_4
- The "weight" consists of all components that do have a factor of e_4

GOC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

• The bulk of \mathbf{a} is denoted by \mathbf{a}_{\bullet}

• The weight of a is denoted by \mathbf{a}_{\circ}

Any object is the sum of its bulk and weight:

$$\mathbf{a} = \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a}$$

- Weight of point is its w coordinate
- Weight of line is its direction
- Weight of plane is its normal

Туре	Definition	Bulk
Point	$\mathbf{p} = p_x \mathbf{e}_1 + p_y \mathbf{e}_2 + p_z \mathbf{e}_3 + p_w \mathbf{e}_4$	$\mathbf{p}_{\bullet} = p_x \mathbf{e}_1 + p_y \mathbf{e}_2 + p_z \mathbf{e}_3$
Line	$\mathbf{L} = v_x \mathbf{e}_{41} + v_y \mathbf{e}_{42} + v_z \mathbf{e}_{43} + m_x \mathbf{e}_{23} + m_y \mathbf{e}_{31} + m_z \mathbf{e}_{12}$	$\mathbf{L}_{\bullet} = m_x \mathbf{e}_{23} + m_y \mathbf{e}_{31} + m_z \mathbf{e}_{12}$
Plane	$\mathbf{f} = f_x \mathbf{e}_{234} + f_y \mathbf{e}_{314} + f_z \mathbf{e}_{124} + f_w \mathbf{e}_{321}$	$\mathbf{f}_{\bullet} = f_w \mathbf{e}_{321}$

- The bulk contains an object's position
- The weight contains attitude and orientation
- An object with zero bulk contains the point at the origin
- An object with zero weight is contained by the plane at infinity

- There is a fundamental symmetry in geometric algebra
- We have assigned dimensionality to objects based on how many basis vectors are present
- Objects have another dimensionality based on how many basis vectors are *absent*

- Every object is really two things at once
 - Full space and empty space
 - Grade and antigrade

• This is duality, and it's everywhere in GA

Basis Elements	Grade / Antigrade				
1	0 / 4				
\mathbf{e}_1					
e ₂	1 / 3				
e ₃					
\mathbf{e}_4					
$\mathbf{e}_{23} = \mathbf{e}_2 \wedge \mathbf{e}_3$					
$\mathbf{e}_{31} = \mathbf{e}_3 \wedge \mathbf{e}_1$					
$\mathbf{e}_{12} = \mathbf{e}_1 \wedge \mathbf{e}_2$	2 / 2				
$\mathbf{e}_{43} = \mathbf{e}_4 \wedge \mathbf{e}_3$					
$\mathbf{e}_{42} = \mathbf{e}_4 \wedge \mathbf{e}_2$					
$\mathbf{e}_{41} = \mathbf{e}_4 \wedge \mathbf{e}_1$					
$\mathbf{e}_{321} = \mathbf{e}_3 \wedge \mathbf{e}_2 \wedge \mathbf{e}_1$					
$\mathbf{e}_{124} = \mathbf{e}_1 \wedge \mathbf{e}_2 \wedge \mathbf{e}_4$	2 / 1				
$\mathbf{e}_{314} = \mathbf{e}_3 \wedge \mathbf{e}_1 \wedge \mathbf{e}_4$	3/1				
$\mathbf{e}_{234} = \mathbf{e}_2 \wedge \mathbf{e}_3 \wedge \mathbf{e}_4$					
$\mathbb{1} = \mathbf{e}_1 \wedge \mathbf{e}_2 \wedge \mathbf{e}_3 \wedge \mathbf{e}_4$	4 / 0				

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

A point has one full dimension

It also has three empty dimensions

 From different perspectives, it simultaneously looks like a point and a plane

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Dualization

- We can map basis elements so that full and empty dimensions are exchanged
- If we think of the dimensions used by a basis element as a 4-bit code, then dualization inverts the bits
- There are many choices for dualization functions, and they just differ in sign in a grade-dependent manner

Complements

 One choice for dualization is the "right complement"

• The right complement of a is the object $\overline{\mathbf{a}}$ such that

 $\mathbf{a} \wedge \overline{\mathbf{a}} = 1$

This is also called the Hodge dual

Complements

In 4D, right complement is not an involution

• The inverse is the "left complement" a

 $\mathbf{a} \wedge \mathbf{a} = \mathbb{1}$

Right and left complements differ only in sign

GOC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Complements

 Here, the basis elements are ordered so that taking the complement just reverses the list and adjusts the sign

Basis element a	1	\mathbf{e}_1	e ₂	e ₃	e ₄	e ₂₃	e ₃₁	e ₁₂	e ₄₃	e ₄₂	e ₄₁	e ₃₂₁	e ₁₂₄	e ₃₁₄	e ₂₃₄	1
Right complement $\overline{\mathbf{a}}$	1	e ₂₃₄	e ₃₁₄	e ₁₂₄	e ₃₂₁	$-e_{41}$	- e ₄₂	$-e_{43}$	$-e_{12}$	$-e_{31}$	$-e_{23}$	- e ₄	-e ₃	$-\mathbf{e}_2$	$-\mathbf{e}_1$	1
Left complement <u>a</u>	1	$-e_{234}$	$-e_{314}$	$-e_{124}$	- e ₃₂₁	$-e_{41}$	$-e_{42}$	$-e_{43}$	$-e_{12}$	$-e_{31}$	$-e_{23}$	e ₄	e ₃	e ₂	\mathbf{e}_1	1
Double complement $\overline{\overline{\mathbf{a}}}$ or $\underline{\underline{\mathbf{a}}}$	1	$-\mathbf{e}_1$	$-\mathbf{e}_2$	-e ₃	- e ₄	e ₂₃	e ₃₁	e ₁₂	e ₄₃	e ₄₂	e ₄₁	- e ₃₂₁	$-e_{124}$	$-e_{314}$	$-e_{234}$	1

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Attitude Extraction

- Weight contains information about attitude
- The weight complement is useful for extracting this information to be used another way
- Very useful for projections

Туре	Definition	Weight Complement	Interpr
Point	$\mathbf{p} = p_x \mathbf{e}_1 + p_y \mathbf{e}_2 + p_z \mathbf{e}_3 + p_w \mathbf{e}_4$	$\underline{\mathbf{p}}_{\odot} = -p_w \mathbf{e}_{321}$	Plane at
Line	$\mathbf{L} = v_x \mathbf{e}_{41} + v_y \mathbf{e}_{42} + v_z \mathbf{e}_{43} + m_x \mathbf{e}_{23} + m_y \mathbf{e}_{31} + m_z \mathbf{e}_{12}$	$\underline{\mathbf{L}}_{\odot} = -v_x \mathbf{e}_{23} - v_y \mathbf{e}_{31} - v_z \mathbf{e}_{12}$	Line at i
Plane	$\mathbf{f} = f_x \mathbf{e}_{234} + f_y \mathbf{e}_{314} + f_z \mathbf{e}_{124} + f_w \mathbf{e}_{321}$	$\underline{\mathbf{f}_{\odot}} = f_x \mathbf{e}_1 + f_y \mathbf{e}_2 + f_z \mathbf{e}_3$	Normal

etation

infinity.

infinity perpendicular to line L.

vector of the plane **f**.

Antiwedge Product

- Also known as exterior antiproduct
 - Grassmann called it regressive combinatorial product

Written with downward wedge:

$\mathbf{a} \lor \mathbf{b}$

Read as "a antiwedge b"

Antiwedge Product

- Wedge product combines full dimensions
 - Add grades of operands
- Antiwedge product combines empty dimensions
 - Add antigrades of operands

Antiwedge Product

Dual to wedge product

$$\mathbf{c} = \mathbf{a} \wedge \mathbf{b}$$
$$\overline{\mathbf{c}} = \overline{\mathbf{a}} \vee \overline{\mathbf{b}}$$

 Operates on antivectors in same way that wedge product operates on vectors

De Morgan's Laws

- All operations in GA have duals that together satisfy De Morgan's Laws
- For wedge and antiwedge:

$$\mathbf{a} \lor \mathbf{b} = \overline{\mathbf{a} \land \mathbf{b}} = \overline{\mathbf{a} \land \mathbf{b}}$$

- This can be taken as definition of antiwedge
 - Depends on specific choice of dualization function
 - Only affects orientation of some results

Join and Meet

- Wedge product combines full dimensions
 - Join operation
 - Analogous to union

- Antiwedge product combines empty dimensions
 - Meet operation
 - Analogous to intersection

Formula	Description]
$\mathbf{p} \wedge \mathbf{q} = (q_x p_w - p_x q_w) \mathbf{e}_{41} + (q_y p_w - p_y q_w) \mathbf{e}_{42} + (q_z p_w - p_z q_w) \mathbf{e}_{43} + (p_y q_z - p_z q_y) \mathbf{e}_{23} + (p_z q_x - p_x q_z) \mathbf{e}_{31} + (p_x q_y - p_y q_x) \mathbf{e}_{12}$	Line containing points p and q . Zero if p and q are coincident.	p
$\mathbf{L} \wedge \mathbf{p} = (v_y p_z - v_z p_y + m_x p_w) \mathbf{e}_{234} + (v_z p_x - v_x p_z + m_y p_w) \mathbf{e}_{314} + (v_x p_y - v_y p_x + m_z p_w) \mathbf{e}_{124} - (m_x p_x + m_y p_y + m_z p_z) \mathbf{e}_{321}$	Plane containing line L and point p . Normal is zero if p lies in L .	
$\mathbf{f} \lor \mathbf{g} = (f_z g_y - f_y g_z) \mathbf{e}_{41} + (f_x g_z - f_z g_x) \mathbf{e}_{42} + (f_y g_x - f_x g_y) \mathbf{e}_{43} + (f_x g_w - g_x f_w) \mathbf{e}_{23} + (f_y g_w - g_y f_w) \mathbf{e}_{31} + (f_z g_w - g_z f_w) \mathbf{e}_{12}$	Line where planes f and g intersect. Direction is zero if f and g are parallel.	g
$\mathbf{L} \vee \mathbf{f} = (m_y f_z - m_z f_y + v_x f_w) \mathbf{e}_1 + (m_z f_x - m_x f_z + v_y f_w) \mathbf{e}_2 + (m_x f_y - m_y f_x + v_z f_w) \mathbf{e}_3 - (v_x f_x + v_y f_y + v_z f_z) \mathbf{e}_4$	Point where line L intersects plane f . Weight is zero if L and f are parallel.	
$\frac{\mathbf{f}_{\odot} \wedge \mathbf{p} = -f_x p_w \mathbf{e}_{41} - f_y p_w \mathbf{e}_{42} - f_z p_w \mathbf{e}_{43}}{+ (f_y p_z - f_z p_y) \mathbf{e}_{23} + (f_z p_x - f_x p_z) \mathbf{e}_{31} + (f_x p_y - f_y p_x) \mathbf{e}_{12}}$	Line perpendicular to plane f and passing through point p .	
$\frac{\mathbf{L}_{\odot} \wedge \mathbf{p} = -v_{x} p_{w} \mathbf{e}_{234} - v_{y} p_{w} \mathbf{e}_{314} - v_{z} p_{w} \mathbf{e}_{124}}{+ (v_{x} p_{x} + v_{y} p_{y} + v_{z} p_{z}) \mathbf{e}_{321}}$	Plane perpendicular to line L and containing point p .	L
$\frac{\mathbf{f}_{\odot} \wedge \mathbf{L} = (v_y f_z - v_z f_y) \mathbf{e}_{234} + (v_z f_x - v_x f_z) \mathbf{e}_{314} + (v_x f_y - v_y f_x) \mathbf{e}_{124}}{-(m_x f_x + m_y f_y + m_z f_z) \mathbf{e}_{321}}$	Plane perpendicular to plane f and containing line L . Normal is zero if L is perpendicular to f .	

Plane/Point Volume

Wedge product of point p and plane f is

$$\mathbf{p} \wedge \mathbf{f} = (p_x f_x + p_y f_y + p_z f_z + p_w)$$

Same as conventional dot product

 Gives signed distance between point and plane, scaled by weights of point and plane

f_{w}) 1

Line/Line Volume

• Wedge product of two lines L_1 and L_2 is

$$\mathbf{L}_1 \wedge \mathbf{L}_2 = -(\mathbf{v}_1 \cdot \mathbf{m}_2 + \mathbf{v}_2 \cdot \mathbf{m}_1)$$

 Gives signed distance between lines, scaled by magnitude of $\mathbf{v}_1 \wedge \mathbf{v}_2$

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

 \mathbf{q}_2

Line Crossing

- Antiwedge product gives same value as scalar
- Used to detect which way lines cross each other

 $L_1 \vee L_2 > 0$

Line Between Two Lines

- Line J perpendicular to lines K and L
 - Can't be produced by wedge/antiwedge product
 - It does appear in the geometric product

Application: Shadow Regions

- Need convex region where shadow castors must be to affect scene
- Precompute lines for frustum edges
- Find silhouette w.r.t. light
- Take wedge products with light position

Projections

 Wedge and antiwedge products in specific combinations perform projections

- These are derived from "interior products"
 - All projections have a uniform formula
 - Interior antiproducts perform "antiprojections"

Projections

Antiprojections

Special Projections

 Point at origin and plane at infinity produce special values

ProjectionDescription
$$(\underline{\mathbf{f}}_{\bigcirc} \wedge \mathbf{e}_{4}) \vee \mathbf{f} = -f_{x} f_{w} \mathbf{e}_{1} - f_{y} f_{w} \mathbf{e}_{2} - f_{z} f_{w} \mathbf{e}_{3} + (f_{x}^{2} + f_{y}^{2} + f_{z}^{2}) \mathbf{e}_{4}$$
Point closest $(\underline{\mathbf{L}}_{\bigcirc} \wedge \mathbf{e}_{4}) \vee \mathbf{L} = (v_{y} m_{z} - v_{z} m_{y}) \mathbf{e}_{1} + (v_{z} m_{x} - v_{x} m_{z}) \mathbf{e}_{2} + (v_{x} m_{y} - v_{y} m_{x}) \mathbf{e}_{3} + (v_{x}^{2} + v_{y}^{2} + v_{z}^{2}) \mathbf{e}_{4}$ Point closest

AntiprojectionDescription
$$(\underline{\mathbf{p}} \bullet \lor \mathbf{e}_{321}) \land \mathbf{p} = -p_x p_w \mathbf{e}_{234} - p_y p_w \mathbf{e}_{314} - p_z p_w \mathbf{e}_{124} + (p_x^2 + p_y^2 + p_z^2) \mathbf{e}_{321}$$
Plane farthese $(\underline{\mathbf{L}} \bullet \lor \mathbf{e}_{321}) \land \mathbf{L} = (m_y v_z - m_z v_y) \mathbf{e}_{234} + (m_z v_x - m_x v_z) \mathbf{e}_{314} + (m_x v_y - m_y v_x) \mathbf{e}_{124} + (m_x^2 + m_y^2 + m_z^2) \mathbf{e}_{321}$ Plane farthese

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

t to the origin on the plane f.

t to the origin on the line L.

st from the origin containing the point **p**.

st from the origin containing the line L.

- Adds more information to wedge product
- Incorporates a metric
 - Allows us to make measurements
 - Provides the mechanism for Euclidean isometries

• Like all operations in GA, the geometric product has a dual operation, or antiproduct

- Conventional treatments of GA ignore the antiproduct
- Geometric product has been expressed by plain old juxtaposition: c = ab
- With two products, we need an infix symbol to distinguish between them

- The geometric product incorporates the wedge product and adds information to it
- So we write the geometric product as

$\mathbf{a} \wedge \mathbf{b}$

• We read this as "a wedge-dot b"

Geometric Antiproduct

- The geometric antiproduct incorporates the antiwedge product and adds information to it
- So we write the geometric antiproduct as

a ∨ b

• We read this as "a antiwedge-dot b"

Metric

- The 4D projective geometric algebra is denoted by $\mathcal{G}_{3,0,1}$
- The subscripts mean that:
 - 3 basis vectors square to +1
 - O basis vectors square to −1
 - 1 basis vector squares to 0
- The fourth dimension has no physical measure

Metric

 Metrics apply symmetrically to geometric product and antiproduct

$$\mathbf{e}_1 \wedge \mathbf{e}_1 = 1$$
 $\overline{\mathbf{e}}_1 \vee \overline{\mathbf{e}}_1$ $\mathbf{e}_2 \wedge \mathbf{e}_2 = 1$ $\overline{\mathbf{e}}_2 \vee \overline{\mathbf{e}}_2$ $\mathbf{e}_3 \wedge \mathbf{e}_3 = 1$ $\overline{\mathbf{e}}_3 \vee \overline{\mathbf{e}}_3$ $\mathbf{e}_4 \wedge \mathbf{e}_4 = 0$ $\overline{\mathbf{e}}_4 \vee \overline{\mathbf{e}}_4$

 $\overline{\mathbf{e}}_1 = \mathbb{1}$ $\overline{\mathbf{e}}_2 = \mathbb{1}$ $\overline{\mathbf{e}}_3 = \mathbb{1}$ $\overline{\mathbf{e}}_4 = \mathbf{0}$

Geometric Product $\mathbf{a} \wedge \mathbf{b}$ $\square \mathbf{a} \wedge \mathbf{b} = \mathbf{a} \wedge \mathbf{b}$ $\square \mathbf{a} \wedge \mathbf{b} = \mathbf{a} \wedge \mathbf{b}$											$\mathbf{b}=0$					
ab	1	e ₁	e ₂	e ₃	e ₄	e ₂₃	e ₃₁	e ₁₂	e ₄₃	e ₄₂	e ₄₁	e ₃₂₁	e ₁₂₄	e ₃₁₄	e ₂₃₄	1
1	1	e ₁	e ₂	e ₃	e ₄	e ₂₃	e ₃₁	e ₁₂	e ₄₃	e ₄₂	e ₄₁	e ₃₂₁	e ₁₂₄	e ₃₁₄	e ₂₃₄	1
e ₁	\mathbf{e}_1	1	e ₁₂	$-e_{31}$	$-{\bf e}_{41}$	$-\mathbf{e}_{321}$	$-\mathbf{e}_3$	e ₂	e ₃₁₄	$-e_{124}$	$-\mathbf{e}_4$	$-{\bf e}_{23}$	$-e_{42}$	e ₄₃	1	e ₂₃₄
e ₂	e ₂	$-{\bf e}_{12}$	1	e ₂₃	$-e_{42}$	e ₃	$-\mathbf{e}_{321}$	$-\mathbf{e}_1$	$-e_{234}$	$-\mathbf{e}_4$	e ₁₂₄	$-{\bf e}_{31}$	e ₄₁	1	$-{\bf e}_{43}$	e ₃₁₄
e ₃	e ₃	e ₃₁	$-{\bf e}_{23}$	1	$-{\bf e}_{43}$	$-\mathbf{e}_2$	\mathbf{e}_1	$-e_{321}$	$-\mathbf{e}_4$	e ₂₃₄	$-{\bf e}_{314}$	$-{\bf e}_{12}$	1	$-e_{41}$	e ₄₂	e ₁₂₄
e ₄	e ₄	e ₄₁	e ₄₂	e ₄₃	0	e ₂₃₄	e ₃₁₄	e ₁₂₄	0	0	0	1	0	0	0	0
e ₂₃	e ₂₃	$-e_{321}$	$-\mathbf{e}_3$	e ₂	e ₂₃₄	-1	$-{\bf e}_{12}$	e ₃₁	e ₄₂	$-{\bf e}_{43}$	-1	\mathbf{e}_1	e ₃₁₄	$-e_{124}$	- e ₄	e ₄₁
e ₃₁	e ₃₁	e ₃	$-\mathbf{e}_{321}$	$-\mathbf{e}_1$	e ₃₁₄	e ₁₂	-1	$-e_{23}$	$-{\bf e}_{41}$	-1	e ₄₃	e ₂	$-e_{234}$	-e ₄	e ₁₂₄	e ₄₂
e ₁₂	e ₁₂	$-\mathbf{e}_2$	e ₁	$-\mathbf{e}_{321}$	e ₁₂₄	$-{\bf e}_{31}$	e ₂₃	-1	—1	e ₄₁	$-{\bf e}_{42}$	e ₃	$-\mathbf{e}_4$	e ₂₃₄	$-e_{314}$	e ₄₃
e ₄₃	e ₄₃	e ₃₁₄	$-e_{234}$	e ₄	0	$-e_{42}$	e ₄₁	-1	0	0	0	$-e_{124}$	0	0	0	0
e ₄₂	e ₄₂	$-e_{124}$	e ₄	e ₂₃₄	0	e ₄₃	-1	$-{\bf e}_{41}$	0	0	0	$-e_{314}$	0	0	0	0
e ₄₁	e ₄₁	e ₄	e ₁₂₄	$-e_{314}$	0	-1	$-e_{43}$	e ₄₂	0	0	0	$-e_{234}$	0	0	0	0
e ₃₂₁	e ₃₂₁	$-e_{23}$	$-e_{31}$	$-e_{12}$	-1	\mathbf{e}_1	e ₂	e ₃	e ₁₂₄	e ₃₁₄	e ₂₃₄	-1	$-e_{43}$	$-e_{42}$	$-e_{41}$	e ₄
e ₁₂₄	e ₁₂₄	$-e_{42}$	e ₄₁	—1	0	$-{\bf e}_{314}$	e ₂₃₄	- e ₄	0	0	0	e ₄₃	0	0	0	0
e ₃₁₄	e ₃₁₄	e ₄₃	-1	$-{\bf e}_{41}$	0	e ₁₂₄	$-\mathbf{e}_4$	$-e_{234}$	0	0	0	e ₄₂	0	0	0	0
e ₂₃₄	e ₂₃₄	-1	$-e_{43}$	e ₄₂	0	-e ₄	$-e_{124}$	e ₃₁₄	0	0	0	e ₄₁	0	0	0	0
1	1	$-e_{234}$	$-e_{314}$	-e ₁₂₄	0	e ₄₁	e ₄₂	e ₄₃	0	0	0	$-\mathbf{e}_4$	0	0	0	0

Geometric Antiproduct

Geometric Antiproduct a \forall b										a ∨ b :	= a ∨ b)	a∨	$\mathbf{b} = 0$		
ab	1	\mathbf{e}_1	e ₂	e ₃	e ₄	e ₂₃	e ₃₁	e ₁₂	e ₄₃	e ₄₂	e ₄₁	e ₃₂₁	e ₁₂₄	e ₃₁₄	e ₂₃₄	1
1	0	0	0	0	e ₃₂₁	0	0	0	e ₁₂	e ₃₁	e ₂₃	0	e ₃	e ₂	e ₁	1
e ₁	0	0	0	0	$-e_{23}$	0	0	0	$-\mathbf{e}_2$	e ₃	$-e_{321}$	0	e ₃₁	$-{\bf e}_{12}$	1	\mathbf{e}_1
e ₂	0	0	0	0	$-e_{31}$	0	0	0	\mathbf{e}_1	$-e_{321}$	$-\mathbf{e}_3$	0	$-{\bf e}_{23}$	1	e ₁₂	e ₂
e ₃	0	0	0	0	$-{\bf e}_{12}$	0	0	0	- e ₃₂₁	$-\mathbf{e}_1$	e ₂	0	1	e ₂₃	$-e_{31}$	e ₃
e ₄	$-e_{321}$	e ₂₃	e ₃₁	e ₁₂	-1	$-\mathbf{e}_1$	$-\mathbf{e}_2$	$-\mathbf{e}_3$	e ₁₂₄	e ₃₁₄	e ₂₃₄	1	$-{\bf e}_{43}$	$-e_{42}$	$-{\bf e}_{41}$	e ₄
e ₂₃	0	0	0	0	\mathbf{e}_1	0	0	0	$-e_{31}$	e ₁₂	-1	0	$-\mathbf{e}_2$	e ₃	$-e_{321}$	e ₂₃
e ₃₁	0	0	0	0	e ₂	0	0	0	e ₂₃	-1	$-{\bf e}_{12}$	0	e ₁	$-\mathbf{e}_{321}$	$-\mathbf{e}_3$	e ₃₁
e ₁₂	0	0	0	0	e ₃	0	0	0	-1	$-e_{23}$	e ₃₁	0	$-e_{321}$	$-\mathbf{e}_1$	e ₂	e ₁₂
e ₄₃	e ₁₂	e ₂	$-\mathbf{e}_1$	$-{\bf e}_{321}$	e ₁₂₄	e ₃₁	$-{\bf e}_{23}$	-1	-1	$-e_{41}$	e ₄₂	e ₃	$-\mathbf{e}_4$	$-e_{234}$	e ₃₁₄	e ₄₃
e ₄₂	e ₃₁	$-\mathbf{e}_3$	$-e_{321}$	\mathbf{e}_1	e ₃₁₄	$-{\bf e}_{12}$	-1	e ₂₃	e ₄₁	-1	$-{\bf e}_{43}$	e ₂	e ₂₃₄	$-\mathbf{e}_4$	$-e_{124}$	e ₄₂
e ₄₁	e ₂₃	$-e_{321}$	e ₃	$-\mathbf{e}_2$	e ₂₃₄	-1	e ₁₂	$-{\bf e}_{31}$	$-e_{42}$	e ₄₃	-1	\mathbf{e}_1	$-e_{314}$	e ₁₂₄	$-\mathbf{e}_4$	\mathbf{e}_{41}
e ₃₂₁	0	0	0	0	-1	0	0	0	e ₃	e ₂	\mathbf{e}_1	0	$-{\bf e}_{12}$	$-{\bf e}_{31}$	$-{\bf e}_{23}$	e ₃₂₁
e ₁₂₄	$-\mathbf{e}_3$	e ₃₁	$-{\bf e}_{23}$	-1	$-{\bf e}_{43}$	$-\mathbf{e}_2$	\mathbf{e}_1	e ₃₂₁	$-\mathbf{e}_4$	$-e_{234}$	e ₃₁₄	e ₁₂	1	e ₄₁	$-{\bf e}_{42}$	e ₁₂₄
e ₃₁₄	$-\mathbf{e}_2$	$-{\bf e}_{12}$	-1	e ₂₃	$-{\bf e}_{42}$	e ₃	e ₃₂₁	$-\mathbf{e}_1$	e ₂₃₄	$-\mathbf{e}_4$	$-{\bf e}_{124}$	e ₃₁	$-{\bf e}_{41}$	1	e ₄₃	e ₃₁₄
e ₂₃₄	$-\mathbf{e}_1$	-1	e ₁₂	$-{\bf e}_{31}$	$-{\bf e}_{41}$	e ₃₂₁	$-\mathbf{e}_3$	e ₂	$-e_{314}$	e ₁₂₄	$-\mathbf{e}_4$	e ₂₃	e ₄₂	$-e_{43}$	1	e ₂₃₄
1	1	\mathbf{e}_1	e ₂	e ₃	e ₄	e ₂₃	e ₃₁	e ₁₂	e ₄₃	e ₄₂	e ₄₁	e ₃₂₁	e ₁₂₄	e ₃₁₄	e ₂₃₄	1

Geometric Product and Antiproduct

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Geometric Product and Antiproduct

• 1 is the multiplicative identity of the product

$$1 \wedge a = a \wedge 1 = a$$

• 1 is the multiplicative identity of the antiproduct

$$\mathbb{1} \lor \mathbf{a} = \mathbf{a} \lor \mathbb{1} = \mathbf{a}$$

GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Reverse

 Unary operation called "reverse" rearranges vector basis element factors so they're multiplied in reverse order

- If this results in an odd permutation, then the effect is that the term is negated
- Mechanism underlying conjugate operation

Antireverse

 As with everything in GA, the reverse has a dual operation, the "antireverse"

 The antireverse rearranges factors so that antivector basis elements are multiplied in reverse order under the antiproduct

Reverses

• The reverse of a is written \tilde{a}

• The antireverse of **a** is written **a**

Basis element a	1	\mathbf{e}_1	e ₂	e ₃	e ₄	e ₂₃	e ₃₁	e ₁₂	e ₄₃	e ₄₂	e ₄₁	e ₃₂₁	e ₁₂₄	e ₃₁₄	e ₂₃₄	1
Reverse ã	1	\mathbf{e}_1	e ₂	e ₃	e ₄	$-{\bf e}_{23}$	$-e_{31}$	$-e_{12}$	$-{\bf e}_{43}$	$-e_{42}$	$-{\bf e}_{41}$	$-e_{321}$	$-{\bf e}_{124}$	$-e_{314}$	$-e_{234}$	1
Antireverse a	1	$-\mathbf{e}_1$	$-\mathbf{e}_2$	- e ₃	- e ₄	$-e_{23}$	$-e_{31}$	$-e_{12}$	$-e_{43}$	$-e_{42}$	$-e_{41}$	e ₃₂₁	e ₁₂₄	e ₃₁₄	e ₂₃₄	1

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Reverses and Complements

- In GA, multiplication by 1 has long been used to algebraically calculate a dual
- This doesn't work in PGA because $\mathbf{e}_4 \wedge \mathbf{e}_4 = 0$

 With only one product, only part of the dual gets calculated:

Reverses and Complements

 The antiproduct is necessary for the remaining pieces of the dual:

Complete duals can now be written as

$$\overline{\mathbf{a}} = \widetilde{\mathbf{a}} \wedge \mathbb{1} + \mathbf{1} \lor \widetilde{\mathbf{a}}$$
$$\mathbf{a} = \mathbf{a} \wedge \mathbb{1} + \mathbf{1} \lor \mathbf{a}$$

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

$\mathbf{a}_{\odot} = \mathbf{1} \lor \tilde{\mathbf{a}}$ $\mathbf{a}_{\odot} = \mathbf{1} \lor \mathbf{a}$

Reflection Through Plane

 All isometries can be broken down into reflections through one or more planes

- Isometries fall into two classes
 - Even number of reflections: proper isometry
 - Odd number of reflections: improper isometry

Fundamental Operation

• Remember, all objects are two things at once

 Reflect dual point of f through dual plane of **p**:

• Reflect point **p** through plane **f**:

$-\mathbf{p} \wedge \mathbf{f} \wedge \tilde{\mathbf{p}}$

$-\mathbf{f} \lor \mathbf{p} \lor \mathbf{f}$

Fundamental Operation

• We can choose to identify objects by the dimensions that are absent/empty and use the geometric product

 Or we can choose to identify objects by the dimensions that are present/full and use the geometric antiproduct

Fundamental Operation

 Both methods are equally valid and produce the same results

• We choose the second option so that points, lines, and planes remain 1, 2, and 3 dimensional in projective space, respectively

Reflection Through Two Planes

 Reflection through two planes meeting at an angle ϕ

 Rotates about line of intersection by 2ϕ

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Reflection Through Two Planes

If planes are parallel, result is a translation

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Motors

- Operator that performs a general proper Euclidean isometry
 - Any combination of rotations and translations
 - Product of an even number of reflections

 Portmanteau of "motion operator" or "moment vector"

Motors

• General form:

$$\mathbf{Q} = r_x \mathbf{e}_{41} + r_y \mathbf{e}_{42} + r_z \mathbf{e}_{43} + r_w \mathbf{1} + u_x \mathbf{e}_{23} + u_y \mathbf{e}_{31}$$

Rotation

• Transformation: $\mathbf{a}' = \mathbf{Q} \lor \mathbf{a} \lor \mathbf{Q}$

GOC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

$+ u_z e_{12} + u_w$

Flectors

- Operator that performs a general improper Euclidean isometry
 - Any combination of a reflection with other rotations and translations
 - Product of an odd number of reflections

Portmanteau of "reflection operator"

Flectors

• General form:

$$\mathbf{G} = s_x \mathbf{e}_1 + s_y \mathbf{e}_2 + s_z \mathbf{e}_3 + s_w \mathbf{e}_4 + h_x \mathbf{e}_{234} + h_y \mathbf{e}_{31}$$
Point

• Transformation: $\mathbf{a}' = -\mathbf{G} \lor \mathbf{a} \lor \mathbf{G}$

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

$h_{14} + h_z \mathbf{e}_{124} + h_w \mathbf{e}_{321}$

Plane

Five Types of Objects in $\mathcal{G}_{3,0,1}$

- Point
 - Four vector components
- Line
 - Six bivector components
- Plane
 - Four trivector components

C21

Five Types of Objects in $\mathcal{G}_{3,0,1}$

- Motor
 - Eight components: scalar, bivector, antiscalar

- Flector
 - Eight components: vector, trivector

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Bulk and Weight

Motors and flectors also have bulk and weight

Туре	Definition	Bulk
Point	$\mathbf{p} = p_x \mathbf{e}_1 + p_y \mathbf{e}_2 + p_z \mathbf{e}_3 + p_w \mathbf{e}_4$	$\mathbf{p}_{\bullet} = p_x \mathbf{e}_1 + p_y \mathbf{e}_2 + p_z \mathbf{e}_3$
Line	$\mathbf{L} = v_x \mathbf{e}_{41} + v_y \mathbf{e}_{42} + v_z \mathbf{e}_{43} + m_x \mathbf{e}_{23} + m_y \mathbf{e}_{31} + m_z \mathbf{e}_{12}$	$\mathbf{L}_{\bullet} = m_x \mathbf{e}_{23} + m_y \mathbf{e}_{31} + m_z \mathbf{e}_{12}$
Plane	$\mathbf{f} = f_x \mathbf{e}_{234} + f_y \mathbf{e}_{314} + f_z \mathbf{e}_{124} + f_w \mathbf{e}_{321}$	$\mathbf{f}_{\bullet} = f_w \mathbf{e}_{321}$
Motor	$\mathbf{Q} = r_x \mathbf{e}_{41} + r_y \mathbf{e}_{42} + r_z \mathbf{e}_{43} + r_w \mathbb{1} + u_x \mathbf{e}_{23} + u_y \mathbf{e}_{31} + u_z \mathbf{e}_{12} + u_w$	$\mathbf{Q}_{\bullet} = u_x \mathbf{e}_{23} + u_y \mathbf{e}_{31} + u_z \mathbf{e}_{12} + u_w$
Flector	$\mathbf{G} = s_x \mathbf{e}_1 + s_y \mathbf{e}_2 + s_z \mathbf{e}_3 + s_w \mathbf{e}_4 + h_x \mathbf{e}_{234} + h_y \mathbf{e}_{314} + h_z \mathbf{e}_{124} + h_w \mathbf{e}_{321}$	$\mathbf{G}_{\bullet} = s_x \mathbf{e}_1 + s_y \mathbf{e}_2 + s_z \mathbf{e}_3 + h_w \mathbf{e}_{321}$

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Geometric Property

• Not every possible multivector a is a valid geometric object

- Must satisfy $\mathbf{a} \wedge \tilde{\mathbf{a}} = \operatorname{scalar}$
- Equivalently $\mathbf{a} \lor \mathbf{a} =$ antiscalar

All vectors and antivectors are valid

Geometric Property

This imposes the following requirements

Туре	Definition	Requiremen
Point	$\mathbf{p} = p_x \mathbf{e}_1 + p_y \mathbf{e}_2 + p_z \mathbf{e}_3 + p_w \mathbf{e}_4$	
Line	$\mathbf{L} = v_x \mathbf{e}_{41} + v_y \mathbf{e}_{42} + v_z \mathbf{e}_{43} + m_x \mathbf{e}_{23} + m_y \mathbf{e}_{31} + m_z \mathbf{e}_{12}$	$v_x m_x + v_y m_y$
Plane	$\mathbf{f} = f_x \mathbf{e}_{234} + f_y \mathbf{e}_{314} + f_z \mathbf{e}_{124} + f_w \mathbf{e}_{321}$	
Motor	$\mathbf{Q} = r_x \mathbf{e}_{41} + r_y \mathbf{e}_{42} + r_z \mathbf{e}_{43} + r_w \mathbb{1} + u_x \mathbf{e}_{23} + u_y \mathbf{e}_{31} + u_z \mathbf{e}_{12} + u_w$	$r_x u_x + r_y u_y +$
Flector	$\mathbf{G} = s_x \mathbf{e}_1 + s_y \mathbf{e}_2 + s_z \mathbf{e}_3 + s_w \mathbf{e}_4 + h_x \mathbf{e}_{234} + h_y \mathbf{e}_{314} + h_z \mathbf{e}_{124} + h_w \mathbf{e}_{321}$	$s_x h_x + s_y h_y +$

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

 $+v_{z}m_{z}=0$

 $r_z u_z + r_w u_w = 0$

 $s_z h_z + s_w h_w = 0$

Norms

 Since there are two geometric products, there are two different norms

- $\|\mathbf{a}\|_{\bullet} = \sqrt{\mathbf{a} \wedge \tilde{\mathbf{a}}}$ • Bulk norm:
- Weight norm: $\|\mathbf{a}\|_{\bigcirc} = \sqrt{\mathbf{a} \lor \mathbf{a}}$

Norms

 Bulk norm is a scalar Weight norm is an antiscalar

Туре	Definition	Bulk Norm
Point	$\mathbf{p} = p_x \mathbf{e}_1 + p_y \mathbf{e}_2 + p_z \mathbf{e}_3 + p_w \mathbf{e}_4$	$\ \mathbf{p}\ _{\bullet} = \sqrt{p_x^2 + p_y^2 + p_z^2}$
Line	$\mathbf{L} = v_x \mathbf{e}_{41} + v_y \mathbf{e}_{42} + v_z \mathbf{e}_{43} + m_x \mathbf{e}_{23} + m_y \mathbf{e}_{31} + m_z \mathbf{e}_{12}$	$\ \mathbf{L}\ _{\bullet} = \sqrt{m_x^2 + m_y^2 + m_z^2}$
Plane	$\mathbf{f} = f_x \mathbf{e}_{234} + f_y \mathbf{e}_{314} + f_z \mathbf{e}_{124} + f_w \mathbf{e}_{321}$	$\ \mathbf{f}\ _{\bullet} = f_w $
Motor	$\mathbf{Q} = r_x \mathbf{e}_{41} + r_y \mathbf{e}_{42} + r_z \mathbf{e}_{43} + r_w 1 + u_x \mathbf{e}_{23} + u_y \mathbf{e}_{31} + u_z \mathbf{e}_{12} + u_w$	$\ \mathbf{Q}\ _{\bullet} = \sqrt{u_x^2 + u_y^2 + u_z^2 + u_w^2}$
Flector	$\mathbf{G} = s_x \mathbf{e}_1 + s_y \mathbf{e}_2 + s_z \mathbf{e}_3 + s_w \mathbf{e}_4 + h_x \mathbf{e}_{234} + h_y \mathbf{e}_{314} + h_z \mathbf{e}_{124} + h_w \mathbf{e}_{321}$	$\ \mathbf{G}\ _{\bullet} = \sqrt{s_x^2 + s_y^2 + s_z^2 + h_w^2}$

Weight Norm

$$\|\mathbf{p}\|_{\odot} = |p_{w}| \mathbb{1}$$

$$\|\mathbf{L}\|_{\odot} = \mathbb{1}\sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}}$$

$$\|\mathbf{f}\|_{\odot} = \mathbb{1}\sqrt{f_{x}^{2} + f_{y}^{2} + f_{z}^{2}}$$

$$\|\mathbf{Q}\|_{\odot} = \mathbb{1}\sqrt{r_{x}^{2} + r_{y}^{2} + r_{z}^{2} + r_{w}^{2}}$$

$$\|\mathbf{G}\|_{\odot} = \mathbb{1}\sqrt{h_{x}^{2} + h_{y}^{2} + h_{z}^{2} + s_{w}^{2}}$$
Unitization

- An object is unitized when its weight norm is 1
- This happens when the coefficients satisfy the following conditions

Туре	Definition	Unitizat
Point	$\mathbf{p} = p_x \mathbf{e}_1 + p_y \mathbf{e}_2 + p_z \mathbf{e}_3 + p_w \mathbf{e}_4$	$p_{w}^{2} = 1$
Line	$\mathbf{L} = v_x \mathbf{e}_{41} + v_y \mathbf{e}_{42} + v_z \mathbf{e}_{43} + m_x \mathbf{e}_{23} + m_y \mathbf{e}_{31} + m_z \mathbf{e}_{12}$	$v_x^2 + v_y^2 +$
Plane	$\mathbf{f} = f_x \mathbf{e}_{234} + f_y \mathbf{e}_{314} + f_z \mathbf{e}_{124} + f_w \mathbf{e}_{321}$	$f_x^2 + f_y^2$
Motor	$\mathbf{Q} = r_x \mathbf{e}_{41} + r_y \mathbf{e}_{42} + r_z \mathbf{e}_{43} + r_w \mathbb{1} + u_x \mathbf{e}_{23} + u_y \mathbf{e}_{31} + u_z \mathbf{e}_{12} + u_w$	$r_x^2 + r_y^2 +$
Flector	$\mathbf{G} = s_x \mathbf{e}_1 + s_y \mathbf{e}_2 + s_z \mathbf{e}_3 + s_w \mathbf{e}_4 + h_x \mathbf{e}_{234} + h_y \mathbf{e}_{314} + h_z \mathbf{e}_{124} + h_w \mathbf{e}_{321}$	$s_w^2 + h_x^2 +$

Homogeneous Magnitude

What do the norms represent?

• We add them together and get a scalar/antiscalar pair $x\mathbf{1} + y\mathbf{1}$

 This is a homogeneous magnitude that has a bulk and a weight and can also be unitized!

Homogeneous Magnitude

Туре	Definition	Homogeneous Magn
Point	$\mathbf{p} = p_x \mathbf{e}_1 + p_y \mathbf{e}_2 + p_z \mathbf{e}_3 + p_w \mathbf{e}_4$	$\ \mathbf{p}\ = \sqrt{p_x^2 + p_y^2 + p_z^2}$
Line	$\mathbf{L} = v_x \mathbf{e}_{41} + v_y \mathbf{e}_{42} + v_z \mathbf{e}_{43} + m_x \mathbf{e}_{23} + m_y \mathbf{e}_{31} + m_z \mathbf{e}_{12}$	$\ \mathbf{L}\ = \sqrt{m_x^2 + m_y^2 + m_z^2}$
Plane	$\mathbf{f} = f_x \mathbf{e}_{234} + f_y \mathbf{e}_{314} + f_z \mathbf{e}_{124} + f_w \mathbf{e}_{321}$	$\left\ \mathbf{f}\right\ = \left f_{w}\right + \mathbb{1}\sqrt{f_{x}^{2} + f_{y}}$
Motor	$\mathbf{Q} = r_x \mathbf{e}_{41} + r_y \mathbf{e}_{42} + r_z \mathbf{e}_{43} + r_w 1 + u_x \mathbf{e}_{23} + u_y \mathbf{e}_{31} + u_z \mathbf{e}_{12} + u_w$	$\ \mathbf{Q}\ = \sqrt{u_x^2 + u_y^2 + u_z^2 + u_z^2}$
Flector	$\mathbf{G} = s_x \mathbf{e}_1 + s_y \mathbf{e}_2 + s_z \mathbf{e}_3 + s_w \mathbf{e}_4 + h_x \mathbf{e}_{234} + h_y \mathbf{e}_{314} + h_z \mathbf{e}_{124} + h_w \mathbf{e}_{321}$	$\ \mathbf{G}\ = \sqrt{s_x^2 + s_y^2 + s_z^2 + s_z^2} + s_z^2 + $

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

itude $+|p_w|1$ $-1\sqrt{v_x^2+v_y^2+v_z^2}$ $f_{v}^{2} + f_{z}^{2}$ $\overline{u_w^2} + 1\sqrt{r_x^2 + r_y^2 + r_z^2 + r_w^2}$ $\overline{h_w^2} + 1\sqrt{h_x^2 + h_y^2 + h_z^2 + s_w^2}$

Geometric Norm

 The geometric norm is produced by unitizing the homogeneous magnitude so that its weight (the antiscalar part) is just 1

 This gives us a concrete measurement of Euclidean distance

Geometric Norm

Туре	Definition	Geometric Norm	Interpretat
Point	$\mathbf{p} = p_x \mathbf{e}_1 + p_y \mathbf{e}_2 + p_z \mathbf{e}_3 + p_w \mathbf{e}_4$	$\ \widehat{\mathbf{p}}\ = \frac{\sqrt{p_x^2 + p_y^2 + p_z^2}}{ p_w }$	Distance fro Half the dis
Line	$\mathbf{L} = v_x \mathbf{e}_{41} + v_y \mathbf{e}_{42} + v_z \mathbf{e}_{43} + m_x \mathbf{e}_{23} + m_y \mathbf{e}_{31} + m_z \mathbf{e}_{12}$	$\ \widehat{\mathbf{L}}\ = \sqrt{\frac{m_x^2 + m_y^2 + m_z^2}{v_x^2 + v_y^2 + v_z^2}}$	Perpendicul Half the dis
Plane	$\mathbf{f} = f_x \mathbf{e}_{234} + f_y \mathbf{e}_{314} + f_z \mathbf{e}_{124} + f_w \mathbf{e}_{321}$	$\left\ \widehat{\mathbf{f}}\right\ = \frac{\left f_{w}\right }{\sqrt{f_{x}^{2} + f_{y}^{2} + f_{z}^{2}}}$	Perpendicul Half the dis
Motor	$\mathbf{Q} = r_x \mathbf{e}_{41} + r_y \mathbf{e}_{42} + r_z \mathbf{e}_{43} + r_w 1 + u_x \mathbf{e}_{23} + u_y \mathbf{e}_{31} + u_z \mathbf{e}_{12} + u_w$	$\ \widehat{\mathbf{Q}}\ = \sqrt{\frac{u_x^2 + u_y^2 + u_z^2 + u_w^2}{r_x^2 + r_y^2 + r_z^2 + r_w^2}}$	Half the dis
Flector	$\mathbf{G} = s_x \mathbf{e}_1 + s_y \mathbf{e}_2 + s_z \mathbf{e}_3 + s_w \mathbf{e}_4 + h_x \mathbf{e}_{234} + h_y \mathbf{e}_{314} + h_z \mathbf{e}_{124} + h_w \mathbf{e}_{321}$	$\ \widehat{\mathbf{G}}\ = \sqrt{\frac{s_x^2 + s_y^2 + s_z^2 + h_w^2}{h_x^2 + h_y^2 + h_z^2 + s_w^2}}$	Half the dis

tion

rom the origin to the point **p**.

stance that the origin is moved by the flector **p**.

lar distance from the origin to the line L.

stance that the origin is moved by the motor **L**.

lar distance from the origin to the plane **f**.

stance that the origin is moved by the flector \mathbf{f} .

stance that the origin is moved by the motor \mathbf{Q} .

stance that the origin is moved by the flector **G**.

Commutators

- Four different commutators
- Combining addition or subtraction with geometric product or antiproduct

$$\begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{-}^{\wedge} = \frac{1}{2} \left(\mathbf{a} \wedge \tilde{\mathbf{b}} - \mathbf{b} \wedge \tilde{\mathbf{a}} \right) \qquad \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{-}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\wedge} = \frac{1}{2} \left(\mathbf{a} \wedge \tilde{\mathbf{b}} + \mathbf{b} \wedge \tilde{\mathbf{a}} \right) \qquad \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}, \mathbf{b} \end{bmatrix}_{+}^{\vee} = \frac{1}{2} \left(\mathbf{a} \\ \begin{bmatrix} \mathbf{a}$$

$\mathbf{a} \lor \widetilde{\mathbf{b}} - \mathbf{b} \lor \widetilde{\mathbf{a}}$

$\mathbf{a} \lor \widetilde{\mathbf{b}} + \mathbf{b} \lor \widetilde{\mathbf{a}}$

Commutators

- All of the join and meet operations can be done with commutators, but there's more...
- A commutator can construct the line between two lines

 Commutators also give Euclidean distances between different objects

Line Between Two Lines

$[\mathbf{K}, \mathbf{L}]_{-}^{\vee} = (v_{y}w_{z} - v_{z}w_{y})\mathbf{e}_{41} + (v_{z}w_{x} - v_{x}w_{z})\mathbf{e}_{42} + (v_{x}w_{y} - v_{y}w_{x})\mathbf{e}_{43}$ + $(v_y n_z - v_z n_y + m_y w_z - m_z w_y) \mathbf{e}_{23} + (v_z n_x - v_x n_z + m_z w_x - m_x w_z) \mathbf{e}_{31} + (v_x n_y - v_y n_x + m_x w_y - m_y w_x) \mathbf{e}_{12}$

Euclidean Distances

Formula	Interpretation
$\frac{\left\ \left[\mathbf{p}, \mathbf{q} \right]_{-}^{\wedge} \right\ _{\odot}}{\left\ \left[\mathbf{p}, \mathbf{q} \right]_{+}^{\vee} \right\ _{\odot}} = \frac{\sqrt{\left(q_{x} p_{w} - p_{x} q_{w} \right)^{2} + \left(q_{y} p_{w} - p_{y} q_{w} \right)^{2} + \left(q_{z} p_{w} - p_{z} q_{w} \right)^{2}}}{\left p_{w} q_{w} \right }$	Distance betwee
$\frac{\left\ \left[\mathbf{p}, \mathbf{L} \right]_{-}^{\wedge} \right\ _{\odot}}{\left\ \left[\mathbf{p}, \mathbf{L} \right]_{+}^{\vee} \right\ _{\odot}} = \frac{\sqrt{\left(v_{y} p_{z} - v_{z} p_{y} + m_{x} p_{w} \right)^{2} + \left(v_{z} p_{x} - v_{x} p_{z} + m_{y} p_{w} \right)^{2} + \left(v_{x} p_{y} - v_{y} p_{x} + m_{z} p_{w} \right)^{2}}{\left\ p_{w} \right\ \sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}}}$	Perpendicular d
$\frac{\left\ \left[\mathbf{p}, \mathbf{f} \right]_{+}^{\wedge} \right\ _{O}}{\left\ \left[\mathbf{p}, \mathbf{f} \right]_{-}^{\vee} \right\ _{O}} = \frac{\left p_{x} f_{x} + p_{y} f_{y} + p_{z} f_{z} + p_{w} f_{w} \right }{\left p_{w} \right \sqrt{f_{x}^{2} + f_{y}^{2} + f_{z}^{2}}}$	Perpendicular d
$\frac{\left\ \left[\mathbf{K}, \mathbf{L} \right]_{+}^{\wedge} \right\ _{\odot}}{\left\ \left[\mathbf{K}, \mathbf{L} \right]_{-}^{\vee} \right\ _{\odot}} = \frac{\left v_{x} n_{x} + v_{y} n_{y} + v_{z} n_{z} + w_{x} m_{x} + w_{y} m_{y} + w_{z} m_{z} \right }{\sqrt{\left(v_{y} w_{z} - v_{z} w_{y} \right)^{2} + \left(v_{z} w_{x} - v_{x} w_{z} \right)^{2} + \left(v_{x} w_{y} - v_{y} w_{x} \right)^{2}}}$	Perpendicular d

en points **p** and **q**.

listance between point **p** and line **L**.

listance between point **p** and plane **f**.

listance between lines K and L.

Rotation

• Reflect through plane f and then plane g

$$\mathbf{g} \lor \mathbf{f} = (f_y g_z - f_z g_y) \mathbf{e}_{41} + (f_z g_x - f_x g_z) \mathbf{e}_{42} + (f_x g_z) \mathbf{e}_{42} + (f_x g_z) \mathbf{e}_{42} + (f_y g_z$$

- Contains line where planes intersect
- Also contains angle information

 $(g_y - f_y g_x) \mathbf{e}_{43}$ $(\mathbf{g}_z - f_z \mathbf{g}_w) \mathbf{e}_{12}$

Rotation

• Rotate about line L through angle 2ϕ

Translation

- Parallel planes intersect at a line at infinity
- And angle between them is zero

 $\mathbf{T} = t_x \mathbf{e}_{23} + t_y \mathbf{e}_{31} + t_z \mathbf{e}_{12} + \mathbb{1}$

Motor

- All proper 3D isometries can be described as a screw motion
- A rotation about a line and a displacement along the same line
- General form of motor

 $\mathbf{Q} \lor \mathbf{a} \lor \mathbf{Q}$

2d

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

 $\mathbf{Q} = \mathbf{L}\sin\phi + 1\cos\phi + (d \lor \mathbf{L})\cos\phi - d\sin\phi$

Motors from Geometries

Motor	Description
$\mathbf{g} \lor \mathbf{f} = (f_y g_z - f_z g_y) \mathbf{e}_{41} + (f_z g_x - f_x g_z) \mathbf{e}_{42} + (f_x g_y - f_y g_x) \mathbf{e}_{43} + (f_w g_x - f_x g_w) \mathbf{e}_{23} + (f_w g_y - f_y g_w) \mathbf{e}_{31} + (f_w g_z - f_z g_w) \mathbf{e}_{12} + (f_x g_x + f_y g_y + f_z g_z) \mathbb{1}$	Rotation about the line f and g intersect by twi between them in the dir
$\mathbf{L} \vee \mathbf{K} = (v_{y}w_{z} - v_{z}w_{y})\mathbf{e}_{41} + (v_{z}w_{x} - v_{x}w_{z})\mathbf{e}_{42} + (v_{x}w_{y} - v_{y}w_{x})\mathbf{e}_{43} + (v_{y}n_{z} - v_{z}n_{y})\mathbf{e}_{23} + (v_{z}n_{x} - v_{x}n_{z})\mathbf{e}_{31} + (v_{x}n_{y} - v_{y}n_{x})\mathbf{e}_{12} - (w_{y}m_{z} - w_{z}m_{y})\mathbf{e}_{23} - (w_{z}m_{x} - w_{x}m_{z})\mathbf{e}_{31} - (w_{x}m_{y} - w_{y}m_{x})\mathbf{e}_{12} - (v_{x}n_{x} + v_{y}n_{y} + v_{z}n_{z}) - (w_{x}m_{x} + w_{y}m_{y} + w_{z}m_{z})$	Rotation about the line closest points on lines twice the angle betwee
$-(v_x w_x + v_y w_y + v_z w_z) \mathbb{1}$ $\mathbf{L} = \{\mathbf{v} \mid \mathbf{m}\} \qquad \mathbf{K} = \{\mathbf{w} \mid \mathbf{n}\}$	Translation by twice th the lines in the direction
$\mathbf{q} \lor \mathbf{p} = (p_x q_w - q_x p_w) \mathbf{e}_{23} + (p_y q_w - q_y p_w) \mathbf{e}_{31} + (p_z q_w - q_z p_w) \mathbf{e}_{12} - p_w q_w \mathbb{1}$	Translation by twice th points p and q in the di

where planes ce the angle rection from **f** to **g**.

containing the K and L by en v and w.

e distance between n from **K** to **L**.

e distance between irection from **p** to **q**.

Motor to Matrix

We eventually want to convert to a 4×4 matrix

 Not as efficient to compute sandwich products a bunch of times

• Let M be the 4×4 matrix that we would use to transform points

Motor to Matrix

Define

$$\mathbf{A} = \begin{bmatrix} 1 - 2\left(r_{y}^{2} + r_{z}^{2}\right) & 2r_{x}r_{y} & 2r_{z}r_{x} & 2\\ 2r_{x}r_{y} & 1 - 2\left(r_{z}^{2} + r_{x}^{2}\right) & 2r_{y}r_{z} & 2\\ 2r_{z}r_{x} & 2r_{y}r_{z} & 1 - 2\left(r_{x}^{2} + r_{y}^{2}\right) & 2\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 0 & -2r_{z}r_{w} & 2r_{y}r_{w} & 2(r_{w}u_{x} - r_{x}u_{w}) \\ 2r_{z}r_{w} & 0 & -2r_{x}r_{w} & 2(r_{w}u_{y} - r_{y}u_{w}) \\ -2r_{y}r_{w} & 2r_{x}r_{w} & 0 & 2(r_{w}u_{z} - r_{z}u_{w}) \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

• Then $\mathbf{M} = \mathbf{A} + \mathbf{B}$ and $\mathbf{M}^{-1} = \mathbf{A} - \mathbf{B}$

 $L(r_y u_z - r_z u_y)$ $2(r_z u_x - r_x u_z)$ $2(r_xu_y-r_yu_x)$

Motor Advantages

Arbitrary rigid motion can be stored as 6 floats

$$\mathbf{Q} = r_x \mathbf{e}_{41} + r_y \mathbf{e}_{42} + r_z \mathbf{e}_{43} + r_w \mathbf{1} + u_x \mathbf{e}_{23} + u_y \mathbf{e}_{31}$$

Rotation

- To be unitized, rotation part has unit length
- Can flip sign to make $r_w \ge 0$

• Then $r_w = \sqrt{1 - r_x^2 - r_y^2 - r_z^2}$

GOC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

$+ \mathcal{U}_{z}\mathbf{e}_{12} + \mathcal{U}_{w}$

Motor Advantages

• Geometric property requires

$$r_x u_x + r_y u_y + r_z u_z + r_w u_w = 0$$

• Can solve for u_w when other 7 values known

 Not a coincidence that a rigid motion in 3D space has 6 degrees of freedom

Motor Advantages

- Extremely easy to invert: $\mathbf{Q}^{-1} = \mathbf{Q}$
- This just negates the 6 bivector components

- Easier to re-orthogonalize than 4×4 matrix
 - Unitize the weight part **r**
 - Subtract projection of bulk part **u** onto weight part

Motor Interpolation

Motors interpolate a lot better than matrices

This is used for dual quaternion skinning

Motor Interpolation

 A motor can be expressed as an exponential with respect to the geometric antiproduct:

$$\mathbf{Q} = e_{\mathbf{v}}^{(d+\varphi \mathbb{1})\mathbf{v}\mathbf{L}} = \cos_{\mathbf{v}}\left(d+\varphi \mathbb{1}\right) + \sin_{\mathbf{v}}\left(d+\varphi \mathbb{1}\right)$$

$$\mathbf{Q} = \mathbf{1}\cos\varphi - d\sin\varphi + (d \lor \mathbf{L})\cos\varphi + \mathbf{L}\sin\varphi$$

 $\mathbf{Q} = (v_x \mathbf{e}_{41} + v_y \mathbf{e}_{42} + v_z \mathbf{e}_{43}) \sin \varphi + 1 \cos \varphi - d \sin \varphi$ + $(dv_x e_{23} + dv_v e_{31} + dv_z e_{12}) \cos \varphi$ $+(m_x \mathbf{e}_{23} + m_v \mathbf{e}_{31} + m_z \mathbf{e}_{12})\sin\varphi$

 $\varphi 1) \vee L$

 $\ln \varphi$

Motor Interpolation

 The exponential form allows for high-quality interpolation, but requires a logarithm

 In practice, linear interpolation and re-unitization are sufficient

Dual Quaternion Skinning

Reflection and Inversion

Planes and points as isometry operators

Transflection

A plane and a direction

$$\mathbf{H} = s_x \mathbf{e}_1 + s_y \mathbf{e}_2 + s_z \mathbf{e}_3 + \mathbf{h}$$

Flector

- All improper 3D isometries can be described as a rotoreflection
- This is a rotation about a line and a reflection through a plane perpendicular to that line
- General form of a flector

Flector

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

a

Flector to Matrix

Define

$$\mathbf{A} = \begin{bmatrix} 2\left(h_{y}^{2}+h_{z}^{2}\right)-1 & -2h_{x}h_{y} & -2h_{z}h_{x} \\ -2h_{x}h_{y} & 2\left(h_{z}^{2}+h_{x}^{2}\right)-1 & -2h_{y}h_{z} \\ -2h_{z}h_{x} & -2h_{y}h_{z} & 2\left(h_{x}^{2}+h_{y}^{2}\right)-1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 0 & 2h_z s_w & -2h_y s_w & 2(h_y s_z - h_z s_y) \\ -2h_z s_w & 0 & 2h_x s_w & 2(h_z s_x - h_x s_z) \\ 2h_y s_w & -2h_x s_w & 0 & 2(h_x s_y - h_y s_x) \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

• Then $\mathbf{M} = \mathbf{A} + \mathbf{B}$ and $\mathbf{M}^{-1} = \mathbf{A} - \mathbf{B}$

 $2(s_x s_w - h_x h_w)$ $2(s_y s_w - h_y h_w)$ $\frac{2(s_z s_w - h_z h_w)}{1}$

More Information

projectivegeometricalgebra.org

lengyel@terathon.com

