
Advanced Stencil Shadow
and

Penumbral Wedge Rendering

Eric Lengyel

Overview

• Stencil shadow optimizations
• Penumbral wedge rendering
• Demonstration
• Questions

Stencil Shadow Pros

• Very accurate and robust
• Nearly artifact-free

– Faceting near the silhouette edges
is the only problem

• Work for point lights and
directional lights equally well

• Low memory usage

Stencil Shadow Cons

• Too accurate — hard edges
– Need a way to soften

• Very fill-intensive
– Scissor and depth bounds test help

• Significant CPU work required
– Silhouette determination
– Building shadow volumes

Hardware Support

• GL_EXT_stencil_two_side
• GL_ATI_separate_stencil_func

– Both allow different stencil operations to
be executed for front and back facing
polygons

• GL_EXT_depth_bounds_test
– Helps reduce frame buffer writes

• Double-speed rendering

Scissor Optimizations

• Most important fill-rate
optimization for stencil shadows

• Even more important for
penumbral wedge shadows

• Hardware does not generate
fragments outside the scissor
rectangle — very fast

Scissor Optimizations

• Scissor rectangle can be applied
on a per-light basis or even a
per-geometry basis

• Requires that lights have a finite
volume of influence

Light Scissor

Camera

Light

Image Plane

View Frustum

Light Scissor

• Project light volume onto the
image plane

• Intersect extents with the
viewport to get light’s scissor
rectangle

• Mathematical details at:
– http://www.gamasutra.com/features/

20021011/lengyel_01.htm

No Light Scissor

Shadow volumes extend
to edges of viewport

Light Scissor

Shadow volume fill
reduced significantly

Depth Bounds Test

Camera

Light

View Frustum

Max Depth

Min Depth

Depth Bounds Test

• Like a z scissor, but...
• Operates on values already in the

depth buffer, not the depth of the
incoming fragment

• Saves writes to the stencil buffer
when shadow-receiving geometry
is out of range

Depth Bounds Test

Camera

Max Depth

Min Depth

Rejected
Fragments

Shadow
Volume

Shadow
Receiver

No Depth Bounds Test

Shadow volumes extend
closer to and further
from camera than
necessary

Depth Bounds Test

Shadow volume fill
outside depth bounds
is removed

No Depth Bounds Test

A lot of extra shadow
volume fill where we
know it can’t have any
effect

Depth Bounds Test

Parts that can’t
possibly intersect the
environment removed

Depth Bounds Test

• Depths bounds specified in
viewport coordinates

• To get these from camera space,
we need to apply projection matrix
and viewport transformation

• Apply to points (0,0,z,1)

Depth Bounds Test

• Let P be the projection matrix and
let [dmin, dmax] be the depth range

• Viewport depth d corresponding to
camera space z is given by

max min 33 34 max min

43 442 2
d d P z P d dd

P z P
− + + 

= + + 

Geometry Scissor

• We can do much better than a
single scissor rectangle per light

• Calculate a scissor rectangle for
each geometry casting a shadow

Geometry Scissor

• Define a bounding box for the light
– Doesn’t need to contain the entire sphere

of influence, just all geometry that can
receive shadows

– For indoor scenes, the bounding box is
usually determined by the locations of
walls

Geometry Scissor

Bounding
Box

Light
Sphere

Geometry Scissor

• For each geometry, define a simple
bounding polyhedron for its
shadow volume
– Construct a pyramid with its apex at the

light’s position and its base far enough
away to be outside the light’s sphere of
influence

– Want pyramid to be as tight as possible
around geometry

Geometry Scissor

Light’s
Bounding

Box

Light
Sphere

Shadow
Volume

Bounding
Polyhedron

Geometry Scissor

• Clip shadow volume’s bounding
polyhedron to light’s bounding box

• Project vertices of resulting
polyhedron onto image plane

• This produces the boundary of a
much smaller scissor rectangle

• Also gives us a much smaller depth
bounds range

Geometry Scissor

Light’s
Bounding

Box

Light
Sphere

Clipped
Bounding

Polyhedron

Camera

Geometry Scissor

Scissor Rectangle

Depth
Bounds

Image Plane

Geometry Scissor

Camera

Scissor

Depth
Bounds

Image Plane

No Geometry Scissor

Light scissor rectangle
and depth bounds test
are no help at all in
this case

Geometry Scissor

Shadow volume fill
drastically reduced

Scissor and Depth Bounds

• Performance increase for ordinary
stencil shadows not spectacular

• Real-world scenes get about 5-8%
faster using per-geometry scissor
and depth bounds test

• Hardware is doing very little work
per fragment, so reducing number
of fragments is not a huge win

Scissor and Depth Bounds

• For penumbral wedge rendering,
it’s a different story

• We will do much more work per
fragment, so eliminating a lot of
fragments really helps

• Real-world scenes can get 40-45%
faster using per-geometry scissor
and depth bounds test

Penumbral Wedge Shadows

• Generates soft shadows for
area light sources

• Based on original work by Tomas
Akenine-Möller and Ulf Assarsson:
– http://graphics.cs.lth.se/

research/shadows/

• A new rendering algorithm follows

Penumbral Wedge Shadows

• General procedure
– First render ordinary stencil shadows
– For each silhouette edge, generate a

wedge that represents the extent of the
penumbra

– For each wedge, apply a correction to the
stencil shadows that softens the hard
shadow outline

Penumbral Wedge Shadows

Area Light

Shadow Castor

Inner PenumbraOuter Penumbra

A Penumbral Wedge

Inner Penumbra Outer Penumbra

Extruded
Silhouette

Edge

A Penumbral Wedge

Soft Shadow Correction

• Darken area inside outer penumbra
• Lighten area inside inner penumbra

Soft Shadow Correction

• Lighting pass for ordinary stencil
shadows uses stencil test
– 0 in stencil buffer at a particular pixel

means light can reach that pixel
– Nonzero means pixel is in shadow

Soft Shadow Correction

• For soft shadows, we use alpha
blending during lighting pass
– Value in the alpha channel represents how

much of the area light is covered
– 0 means entire light source visible from a

particular pixel
– 1 means no part of light source is visible

(fully shadowed)

Soft Shadow Correction
Area Light

Shadow Castor

Inner PenumbraOuter Penumbra

0.5 1.00.0
Alpha Values

Soft Shadow Correction

• After rendering stencil shadows,
the stencil buffer contains integer
values

• Each value represents the number
of shadow volumes covering a
particular pixel

Soft Shadow Correction

• To make fractional corrections, we
need to be able to treat the
integer stencil values as either
fixed-point or floating-point
numbers

• We have two options...

Soft Shadow Correction

• Option 1 Render the shadow
volumes into a 16-bit floating-point
render target instead of the
ordinary stencil buffer

• Option 2 Copy the stencil values
into the alpha channel and shift
them left by some number of
fraction bits

Soft Shadow Correction

• Rendering shadow volumes into a
floating-point render target
– Requires hardware that can do this
– We need floating-point blending
– We lose two-sided rendering unless we can

access a facing register
– We lose double-speed rendering

Soft Shadow Correction

• Copying stencil values to alpha
– Requires the OpenGL extension
GL_NV_copy_depth_to_color

– After copying, we need to scale the alpha
values since a 1 in the stencil buffer is now
1/255 in the alpha channel

– Scaling by 31.875 gives us 3.5 bit fixed-
point in the alpha channel

Soft Shadow Correction

• Now we need to make fractional
corrections to the stencil values
– For each inner half of a penumbral wedge,

we subtract a fraction
– For each outer half of a penumbral wedge,

we add a fraction
– Value becomes 0.5 at original stencil

boundaries

Penumbral Wedge Rendering

• How do we know which pixels need
a correction?

• Each penumbral wedge is divided
into two halves
– The inner half-wedge
– The outer half-wedge
– Both halves are bounded on one side by

the extruded silhouette edge used for
stencil shadows

Penumbral Wedge Rendering

Inner Half-wedge Outer Half-wedge

Extruded
Silhouette

Edge

Penumbral Wedge Rendering

• In the vertex program, we compute
the three outside bounding planes
of a half-wedge

• Send these planes to the fragment
program in viewport space!
– Allows us to do a quick test to determine

whether a viewport-space point is outside
the half-wedge

Penumbral Wedge Rendering

• In the fragment program, we test
the viewport-space position of the
point in the frame buffer against
three half-wedge bounding planes

• We will use the depth test to
reject points on the wrong side of
the extruded silhouette edge

Penumbral Wedge Rendering

• What’s a viewport-space point in
the frame buffer?
– The x and y viewport coordinates are

available to fragment programs in the
fragment.position register

– We need to read the z coordinate from a
depth texture

– The coordinates (x, y, z, 1) give the location
of the point already rendered

Penumbral Wedge Rendering
• Bounding plane tests

!!ARBfp1.0
TEMP vssp, temp;
TEX vssp.z, fragment.position, texture[0], RECT;
SWZ vssp.xyw, fragment.position, x, y, 0, 1;
DP4 temp.x, vssp, fragment.texcoord[0];
DP4 temp.y, vssp, fragment.texcoord[1];
DP4 temp.z, vssp, fragment.texcoord[2];
KIL temp.xyzz;

Penumbral Wedge Rendering
• Early-out code sequence (Nvidia)

!!ARBfp1.0
OPTION NV_fragment_program2
TEMP vssp, temp;
TEX vssp.z, fragment.position, texture[0], RECT;
SWZ vssp.xyw, fragment.position, x, y, 0, 1;
DP4C temp.x, vssp, fragment.texcoord[0];
DP4C temp.y, vssp, fragment.texcoord[1];
DP4C temp.z, vssp, fragment.texcoord[2];
RET (LE.xyzz);

Penumbral Wedge Rendering

• In preceding code, texture[0] is
a copy of the depth buffer

• Texture coordinates 0, 1, 2 hold
the 4-component plane vectors for
the three outside bounding planes
– If the dot product between the surface

point and any plane is negative, then the
point is outside the half-wedge

Penumbral Wedge Rendering

• Still have extruded silhouette
plane to worry about
– We take care of it using the z test
– Render inner half-wedges and outer half-

wedges separately
– For both groups of half-wedges divide into

two batches...

Penumbral Wedge Rendering

• Sort half-wedges into two batches:
– 1) Those for which camera is on the

positive side of the silhouette edge
– 2) Those for which camera is on the

negative side of the silhouette edge

• Extruded silhouette plane normal
always points outward from
shadow volume

Penumbral Wedge Rendering

Outer Half-wedgeInner Half-wedge

Normals point
outward

Normals point
inward

Silhouette
plane

Rendering Outer Half-wedges

• Half-wedges for which camera is on
positive side of silhouette plane
– Render front faces when z test fails

• Half-wedges for which camera is on
negative side of silhouette plane
– Render back faces when z test passes

Rendering Outer Half-wedges
Camera on

positive side
Camera on

negative side

Rendering Inner Half-wedges

• Half-wedges for which camera is on
positive side of silhouette plane
– Render front faces when z test passes

• Half-wedges for which camera is on
negative side of silhouette plane
– Render back faces when z test fails

Rendering Inner Half-wedges
Camera on

negative side
Camera on

positive side

Penumbral Wedge Rendering

Penumbral Wedge Rendering

• How much do we add or subtract?
• For each pixel covered by an inner

half-wedge, we subtract the
fraction of light that is visible

• For each pixel covered by an outer
half-wedge, we add the fraction of
light that is occluded

Area Light Occlusion

• First, we need to transform the
surface point into local light space

• Recall that we have the coordinates
in viewport space:

TEX vssp.z, fragment.position, texture[0], RECT;
SWZ vssp.xyw, fragment.position, x, y, 0, 1;

Area Light Occlusion

• Precalculate the transformation
from viewport space to light space

• Apply in fragment program:

TEMP lssp;
DP4 lssp.x, vssp, xform_light[0];
DP4 lssp.y, vssp, xform_light[1];
DP4 lssp.z, vssp, xform_light[2];
DP4 lssp.w, vssp, xform_light[3];
DIV lssp, lssp, lssp.w;

Area Light Occlusion

• Division by the w coordinate is
necessary because we passed
through the inverse of the
projection matrix between
viewport space and light space

• In light space, the z axis is
perpendicular to the plane of the
area light

Area Light Occlusion

• We also adjust the transformation
to light space so that an arbitrarily-
sized rectangular light area is
mapped into [–1,1] in both x and y
directions

x

y

(–1,–1)

(1,1)

Area Light Occlusion

• Next, we need to project the
endpoints of the silhouette edge
onto the light plane

• The vertex program can transform
these points from object space to
light space and pass them to the
fragment program

Area Light Occlusion

Area Light

Silhouette Edge

Surface Point

z

Area Light Occlusion

• But what if one of the endpoints
can’t be projected because it
doesn’t lie between the surface
point and the light plane?

• Solution: clip the silhouette edge
to a local “near plane” first

Area Light Occlusion

Area Light

Silhouette Edge

Surface Point

Near Plane

Clipped
Endpoint

z

Area Light Occlusion

• Once endpoints have been
projected onto the light plane,
we are in a 2D world

• Next step is to clip the projected
edge to the [–1,1] square

Area Light Occlusion

(–1,–1)

(1,1)

(0,0)

Area Light

Clipped
Endpoint

Area Light Occlusion

• Earlier implementations perform
clipping in 3D against the four
planes connecting the area light to
the light-space surface point
– Requires 36 fragment program instructions
– But robust, and didn’t need near plane clip

step

Area Light Occlusion

• However, clipping against near
plane in 3D first and then clipping
against the four sides of the light
area in 2D is much faster
– Total of 23 fragment program instructions
– Also robust

Area Light Occlusion

• Last step is to determine how
much of the light source is
occluded by the extruded
silhouette edge

• We do this by calculating the area
of the sector subtended by the
clipped edge

Area Light Occlusion

(–1,–1)

(1,1)

(0,0)

Area Light

Occluded
Area

Area Light Occlusion

• The occluded area is equal to the
total area between the two line
segments connecting the center of
the light and the two endpoints
minus the area of the triangle
formed by the center and the two
endpoints

• Calling the endpoints E1 and E2...

Area Light Occlusion

(0,0)

Area Light

Occluded
Area

E1

E2

Triangle
Area

0.5 (E1 x E2)

Area Light Occlusion

• Total area between positive x axis
and the direction to any endpoint
is fetched from a cube map texture

(0,0) x

Area Light Occlusion

• We look up the sector area for
both endpoints and subtract to get
the area between the lines

• Then subtract the triangle area,
given by half the cross product
between the two endpoints

• Scale everything by 1/8 for 3.5 bit
fixed point result

Area Light Occlusion

Endpoints are stored in edge.xy and edge.zw

Look up sector areas
TEX area.x, edge.xyxx, texture[1], CUBE;
TEX area.y, edge.zwzz, texture[1], CUBE;

Subtract areas and scale by 1/8
SUB area.z, area.x, area.y;
MADC area, |area.z|, 0.125, {-0.0625, -0.125, 0.0, 0.0};

If area > 0.5, replace with 1 - area
MOV area.w (GT.x), -area.y;

Area Light Occlusion

Calculate area of triangle
MUL temp.xy, edge.xyxy, edge.wzwz;
SUB temp.w, temp.x, temp.y;

Fractional area of triangle relative to whole
light area is 1/8 of cross product

Subtract it from total area and scale by
additional factor of 1/8 for fixed point
MAD result.color, |temp.w|, -0.015625, area.w;

Area Light Occlusion

• Occluded areas from multiple
wedges add together

(0,0)
Occluded

Area

Penumbral Wedge Rendering

• After all wedges have been
rendered, scale the alpha channel
by 8 to get pure fraction
– Render a full-screen quad 3 times
– Double alpha each time
– Restricted to light scissor rectangle
– Color channels masked off

Penumbral Wedge Rendering

• If the value was greater than one,
then it’s saturated to one,
corresponding to fully shadowed

• Then render lighting pass,
multiplying source color by one
minus destination alpha

glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ONE);

Penumbral Wedge Rendering

• Using a floating-point visibility
buffer avoids scaling step

• Visibility values still need to be
copied to alpha channel from
render target

Small Light Area

Shadows sharper,
rendering faster

Large Light Area

Shadows softer,
interact more,
rendering slower

Semi-penumbral Shadows

• Method for speeding up penumbral
wedge soft shadows

• Only render outer half-wedges
• Less correct, but still looks good
• Lose the ability to cast shadows

that have no point of 100% light
occlusion

Semi-penumbral Shadows

Instead of full
penumbra:

Render outer half
of penumbra only:

Inner and outer
half-wedges
rendered

Only outer half-
wedges rendered

Questions?

• lengyel@terathon.com

• Slides and source code available:

https://terathon.com/

	Advanced Stencil Shadow�and�Penumbral Wedge Rendering
	Overview
	Stencil Shadow Pros
	Stencil Shadow Cons
	Hardware Support
	Scissor Optimizations
	Scissor Optimizations
	Light Scissor
	Light Scissor
	Slide Number 10
	Depth Bounds Test
	Depth Bounds Test
	Depth Bounds Test
	Slide Number 14
	Slide Number 15
	Depth Bounds Test
	Depth Bounds Test
	Geometry Scissor
	Geometry Scissor
	Geometry Scissor
	Geometry Scissor
	Geometry Scissor
	Geometry Scissor
	Geometry Scissor
	Geometry Scissor
	Geometry Scissor
	Slide Number 27
	Scissor and Depth Bounds
	Scissor and Depth Bounds
	Penumbral Wedge Shadows
	Penumbral Wedge Shadows
	Penumbral Wedge Shadows
	A Penumbral Wedge
	A Penumbral Wedge
	Soft Shadow Correction
	Soft Shadow Correction
	Soft Shadow Correction
	Soft Shadow Correction
	Soft Shadow Correction
	Soft Shadow Correction
	Soft Shadow Correction
	Soft Shadow Correction
	Soft Shadow Correction
	Soft Shadow Correction
	Penumbral Wedge Rendering
	Penumbral Wedge Rendering
	Penumbral Wedge Rendering
	Penumbral Wedge Rendering
	Penumbral Wedge Rendering
	Penumbral Wedge Rendering
	Penumbral Wedge Rendering
	Penumbral Wedge Rendering
	Penumbral Wedge Rendering
	Penumbral Wedge Rendering
	Penumbral Wedge Rendering
	Rendering Outer Half-wedges
	Rendering Outer Half-wedges
	Rendering Inner Half-wedges
	Rendering Inner Half-wedges
	Penumbral Wedge Rendering
	Penumbral Wedge Rendering
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Area Light Occlusion
	Penumbral Wedge Rendering
	Penumbral Wedge Rendering
	Penumbral Wedge Rendering
	Slide Number 86
	Semi-penumbral Shadows
	Semi-penumbral Shadows
	Slide Number 89
	Questions?

