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Abstract. �is paper presents new concepts in the use of infinite and infinitesimal numbers in real analysis. 

�e theory is based upon the hyperreal number system developed by Abraham Robinson in the 1960s in his 

invention of “nonstandard analysis”. �e paper begins with a short exposition of the construction of the hy-

perreal number system and the fundamental results of nonstandard analysis which are used throughout the 

paper. �e new theory which is built upon this foundation organizes the set of hyperreal numbers through 

structures which depend on an infinite base logarithm. Several new relations are introduced whose properties 

enable the simplification of calculations involving infinite and infinitesimal numbers. �e paper explores two 

areas of application of these results to standard problems in elementary calculus. �e first is to the evaluation 

of limits which assume certain indeterminate forms. �e second is to the determination of convergence of 

infinite series. Both applications provide methods which greatly reduce the amount of computation necessary 

in many situations. 
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Overview 

In the 1960s, Abraham Robinson developed what is called “nonstandard analysis”, and in doing so 
provided a rigorous foundation for the use of infinitesimals in analysis. A new number system 
known as the set of hyperreal numbers was constructed which includes the set of real numbers and 
also contains infinite and infinitesimal numbers. �is paper begins with the construction of the hy-
perreals as a set of equivalence classes of sequences of real numbers. Included in this introductory 
section is the method by which relations defined on the real numbers are extended to relations on 
the hyperreal numbers. �rough these extensions, it is possible to prove statements that hold true 
over the hyperreal numbers which are the “nonstandard” equivalents of statements that hold true 
over the real numbers. In nonstandard analysis, the proofs of these statements are usually facilitated 
by the utilization of what is called the transfer principle. �is concept, however, requires a great 
deal of development of rigorous logic which will not be needed in the remainder of the paper. 
�erefore, the transfer principle is not used in the introductory section at all, and alternate proofs 
of nonstandard results are instead given. 
 In Section 2, we begin the study of new hyperreal structures which organize the set of hyperreal 
numbers into classes called zones, and we introduce the notions of superiority and local equality. 
�ese concepts depend on the logarithms of the hyperreal numbers taken to a fixed infinite base. 
We will be using infinite and infinitesimal numbers in such a way that our calculations will not 
require knowledge of how the hyperreal number system was constructed. Nor will our calculations 
require us to know what specific member of the set of hyperreals that we are using as the infinite 
base of our logarithm—knowing only that the number is infinite will suffice. 
 Once the theory has been developed in Section 2, we proceed in Sections 3 and 4 to present 
applications in two areas. �e first application is to the evaluation of certain limits which assume 
the indeterminate forms , , , and . �e methods presented will provide alternatives 
to l’Hôpital’s rule which generally allow much more efficient computation. �e second application 
is to the determination of the convergence of infinite series. Two new convergence tests will be 
presented which are analogous to the comparison test and limit comparison test. As with limit eval-
uation, these tests significantly reduce the amount of computation in many situations. 
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1 Introduction to Nonstandard Analysis 

�is section presents the reader with the fundamentals of nonstandard analysis which are used 
throughout the remainder of this paper. We begin with the ultrapower construction of the set of 
hyperreal numbers and then proceed to introduce several relations and algebraic structures which 
are defined on this set. �is section consists only of the necessary background information which 
can be found in any introductory text on nonstandard analysis, most notably [3]. Many of the proofs 
included in this section can also be found in the literature, the exceptions being those which rely 
on the transfer principle. 

1.1 Construction of the Hyperreal Number System 

�e goals of the construction of the hyperreal number system are to build a field which contains an 
isomorphic copy of the real numbers as a proper subfield and also contains infinite and infinitesimal 
numbers. Furthermore, it is desired that the numbers in this new field obey all of the same laws 
which hold true over the real numbers. A field having these properties is constructed by using a free 
ultrafilter to partition the set of all sequences of real numbers into equivalence classes. It is then 
these equivalence classes which are the elements of the set of hyperreal numbers. 
 Before presenting the actual construction of the hyperreals, we include the definition of a 
filter. 

Definition 1.1. A filter  on a set S is a nonempty collection of subsets of S having the following 
properties. 

(a)  

(b) If  and  then  

(c) If  and  then  

Note that by (c), a filter  on S always contains S, and that by (a) and (b), no two elements of  are 
disjoint. 
 An ultrafilter on an infinite set S is a maximal filter on S. �e existence of an ultrafilter follows 
from Zorn’s Lemma. A filter  on S is an ultrafilter if and only if it has the following property. 

(d) If  then either  or  
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An ultrafilter  on an infinite set S is called fixed or principal if there exists  such that 
. Ultrafilters which are not fixed are called free. An important fact is that free 

ultrafilters cannot contain any finite sets. By (d), this implies that if  is free then every cofinite 
subset of S is contained in . 
 We now construct the set of hyperreal numbers and prove that it is a linearly ordered field. We 
begin the construction by choosing a free ultrafilter  on the set of natural numbers . �e ultrafilter 

 is not explicitly defined since it does not matter which free ultrafilter on  that we use. �e set 
of all free ultrafilters on  determines a set of isomorphic fields from which we can choose any 
member to be the set of hyperreal numbers. Using , the hyperreals are constructed by considering 
the set of all sequences of real numbers indexed by  and defining the following relation on this 
set. 

Definition 1.2. Given two sequences of real numbers  and ,  if and only if 
. �e entries of the sequences  and  are then said to be equal “almost 

everywhere”. 

 �e phrase “almost everywhere” (abbreviated a.e.) is used to signify that the entries of a se-
quence have a certain property on some set in the ultrafilter . For instance, if the sequence  
has the property that  is an integer for all n in some member of , then  is said to be an integer 
almost everywhere. 

Proposition 1.3. �e relation  is an equivalence relation. 

Proof. Let , , and  be sequences of real numbers. , and thus  is reflexive, 
since . Because equality on the reals is symmetric, if  then , and thus 

 is symmetric. For transitivity, suppose  and . Let  
and . �en . Since A and B are elements of the ul-
trafilter , . �erefore, . 

 �e set of hyperreal numbers, which is denoted by , is defined to be the set of all equivalence 
classes induced by the equivalence relation . We will use the notation  to represent the equiv-
alence class containing . 
 Addition, multiplication, and an ordering are defined on  as follows. 

Definition 1.4. Let . �e operations  (addition) and  (multiplication) and 
the relation  (less than) are defined by 
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(a)  

(b)  

(c)  if and only if  

Proposition 1.5. �e operations  and , and the relation  are well-defined. 

Proof. Suppose  and , and let  and 
 (thus ). �en . So the two 

sums are equal elements of the hyperreals. �e same argument holds true for multiplication. 
 Now suppose  and let . �en the set on which  
contains  and is therefore in . So . Let . �en the set 
on which  contains  and is therefore in . �us . 

 We now claim that the set of hyperreal numbers combined with the operations and ordering 
given in definition 1.4 is a linearly ordered field. 

Proposition 1.6. �e structure  is a linearly ordered field. 

Proof. In order to show that  is a field, we need only prove that  contains inverses since 
the associative, commutative, and distributive laws as well as closure are inherited from the 
real numbers. Let  such that . �en the set  
�us we know that the complement of this set is in . So define  by 

  

�en the product  is equivalent to 1 since  
. �erefore  is invertible and  is a field. 

 Now let  such that . To prove that  is linearly ordered, 
we must show that either  or . Let , 

, and . Since , . So the complement 
of E, which is , is in . If , then . If , then , in which 
case , so . �us  and  are ordered. 

 Now that we have shown that  is a linearly ordered field, we wish to show that  has a 
proper subfield which is isomorphic to . We embed the reals in the hyperreals by defining the map 

 by 
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 . 

To show that  maps  to a proper subfield of , note that  is not equivalent to the 
image of any real number. �is equivalence class is actually an example of an infinite number as is 
defined below. 

1.2  Infinite and Infinitesimal Numbers 

Whether a number is infinite or infinitesimal is independent of the number's sign, so the definitions 
of infinite and infinitesimal numbers will involve absolute values. Absolute value is a function that 
is already defined on the real numbers which we need to extend to the hyperreal numbers. To do 
this, we simply apply the absolute value entrywise to an equivalence class representative in . 
Much more will be said about extending functions from the real numbers to the hyperreal numbers 
shortly, but right now we only need the following definition. 

Definition 1.7. For all , . 

Note that this definition is equivalent to the hyperreal analog of the definition of absolute value on 
the reals, 

  

�is is because if  then  on the same set in the ultrafilter for which , and if 
 then  on the same set in the ultrafilter for which . 

 From this point on, we will use single letters to denote elements of . When we speak of a 
real number , we mean the equivalence class . Although technically speaking, 
the sets , , , and  are not true subsets of the hyperreals, we will use these symbols to refer to 
the images of these sets embedded in . 
 We can now define what is means for a number to be infinite or infinitesimal. 

Definition 1.8. Let . �en a is infinite if and only if  for every positive real number 
r. If a is not infinite then it is finite. We call a infinitesimal if and only if  for every positive 
real number r. 

Note that the set of finite numbers is a subring of  and the set of infinitesimals is an ideal of the 
finite numbers. More importantly, note that the set of hyperreal numbers is nonarchimedean. Not 
every bounded subset of  is guaranteed to have a least upper bound or greatest lower bound. For 
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example, the set of infinite numbers is bounded below by any finite number but has no greatest 
lower bound. 
 We now introduce an equivalence relation which associates numbers which only differ by an 
infinitesimal. 

Definition 1.9. Given , x and y are near or infinitely close if and only if  is an 
infinitesimal. In this case, we write . �e equivalence classes induced by  are called 
monads. �us, the monad about a number , written  is defined by  

. 

 is also partitioned into classes whose elements differ by finite amounts. 

Definition 1.10. �e galaxy about a number , written , is defined by  
. 

 Using monads and galaxies, we can use  to represent the set of all infinitesimal numbers 
and  to represent the set of all finite numbers. As shown below, the set of real numbers is 
isomorphic to the quotient ring . 
 Numbers in  which are not images of real numbers are called nonstandard. Nonstandard 
finite numbers are always infinitely close to exactly one real number, which is called its standard 
part. 

Proposition 1.11. Let a be a finite hyperreal number. �en there exists a unique real number r 
such that . 

Proof. Let . Since a is finite, A is nonempty and is bounded above. Let r be 
the least upper bound of A. For any real ,  and  and thus . 
So  from which is follows that . To show that this r is unique, suppose that there 
exists a real number s such that . �en since  is transitive, . So  for every 
real , and thus . 

Definition 1.12. Let . �en the standard part of a, denoted by  or , is the real 
number r such that . �e function st is called the standard part map. 

�e standard part map is easily shown to be an order preserving homomorphism from  onto  
with kernel . �e quantity  is sometimes called the nonstandard part of x. 
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1.3  Relations and *-Transforms 

We now discuss the method through which functions defined on the set of real numbers are ex-
tended to the hyperreals. �e method actually applies to any arbitrary relation defined on , the set 
of which includes all of the functions defined on . �e process of extending a relation from  to 

 is called a *-transform for which the general definition is next given. 

Definition 1.13. Let P be an n-ary relation on . �en the *-transform of P, denoted by  is 
the set of all n-tuples  satisfying the condition 

. 

 An n-ary relation on  is simply a subset of . �us, unary relations on  are just subsets of 
. Equality, the ordering given by , and functions of one variable are examples of binary relations. 

In order to acquire a more intuitive feeling for how relations on  are extended to , we consider 
a few examples. 
 Let . �en A is a unary relation on , so  consists of those elements  such 
that  (i.e.,  almost everywhere). It should now be clear why the notation 

 is used to represent the set of hyperreal numbers, for if  then , so 
 consists of all equivalence classes represented by any sequence of real numbers. 

 �e set  is called the set of hypernatural numbers and consists of the numbers  
for which  almost everywhere. Likewise,  and  

. �ese are called the hyperintegers and hyperrationals respectively. 

Proposition 1.14. Let  be a set which contains an infinite subset of . �en  contains 
infinite numbers. 

Proof. Let A be an infinite subset of  contained in S. We construct an infinite number in  as 
follows. Let  be the least element of A and then choose each  to be the least element of the 
set . Since A has no upper bound, the sequence  must have the property 
that given any positive real number r, there exists an  such that for all , we have 

. �us  almost everywhere, satisfying the requirement for  to be infinite. 

 Given a set , we use the notation  to represent the set of infinite numbers in S. �us, 
 is the set of infinite hyperintegers in . 

 Let us consider equality on  for a moment as a set of duplets and write  if and only 
if . �en  is the set of all duplets  satisfying , 
which is exactly how we defined equality on the hyperreals. 
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 A function f on  of n variables can be thought of as a set of -tuples having the property 
that if  and , then . �e *-transform of f is the set of 
all -tuples of the form  satisfying 

 . 

So if f is a function of one variable, then . �at is, we just let f operate entry-
wise on an equivalence class representative of a number in . 
 Note that operations such as addition and multiplication are actually functions of two variables. 
In the next section, we will be taking logarithms of hyperreal numbers using a hyperreal number 
for the base. �e logarithm is also a function of two variables so we have 

 . 

If we choose  and , then the first entry of  
is , which is undefined. �is is acceptable, however, since we can assign any value we wish 
to the first entry and the function will still hold true on a set in the ultrafilter . As long as the 
*-transform of a function is defined almost everywhere for the entries of an equivalence class rep-
resentative , it is defined for . 

1.4  Sequences and Series 

Sequences and series of hyperreal numbers will be an important area of study later in this paper. 
When we speak of a sequence of hyperreal numbers, we are actually talking about a sequence of 
sequences of real numbers, and this sequence is indexed not by the natural numbers, but by the 
hypernatural numbers. Below, we examine how sequences of real numbers indexed by the natural 
numbers are *-transformed to sequences of hyperreal numbers indexed by the hypernatural 
numbers. 
 Let  be a sequence of real numbers. �is sequence is actually a function  
where , so we can think of  as the set of duplets . �e *-trans-
form of s is the function  where  for any . �e 
sequence  is an extension of the sequence  in that for any ,  is 
simply the image of  in the hyperreals. 
 If a sequence  tends to a limit in the real numbers, then the sequence  tends to the same 
limit in the hyperreal numbers. �is is proven shortly, but first we need to discuss a little notation. 
�e symbol  is used in the real number system to denote that which is potentially arbitrarily large. 
�us the expression  denotes the value that  approaches as n becomes an arbitrarily large 



10 

natural number. In the hyperreal number system, the symbol  has the same meaning, but by arbi-
trarily large, we mean even larger than any infinite number in . So the expression  
denotes the value that  approaches as n becomes an arbitrarily large hypernatural number. We 
now have the following proposition. 

Proposition 1.15. Suppose that  for some real number L. �en . 

Proof. �e fact that  means that given  there exists an  such that for all 
, . Now let  be a positive hyperreal number and let  be an equivalence class 

representative of . We define the hypernatural number  by choosing  to be any 
natural number for which  for all . �en for any hypernatural number , 

. So . 

 More important to this paper are infinite series of hyperreal numbers. We define an infinite 
series in terms of its sequence of partial sums. Consider the standard sequence 

 , 

which is defined as a function of the natural index n and real numbers . �e sum of the 
infinite series is represented by . �e *-transform of s is the sequence 

 , 

where  are hyperreal numbers and the right hand side represents the definition of the 
nonstandard summation from 1 to a hypernatural number n. �is summation is written in equiva-
lence class form as 

 . 

An important addition to this definition is the requirement that for each of the hyperreal numbers 
, only one equivalence class representative may be used throughout the entire summa-

tion. �at is, to calculate  for a single hypernatural number n, we first choose 
equivalence class representatives for each of the  and use the same representatives each 
time that we evaluate  in the summation. Without this restriction, is it possible 
to find ill-defined summations when n is infinite by choosing different equivalence class represent-
atives for each index k. 
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 �e sum of the infinite series 

  

is defined to be  where n approaches infinity through the hypernatural 
numbers. If this limit exists and is equal to any hyperreal number, including infinite numbers, then 
the series is said to be convergent. 
 We consider an example that is used later in this paper. Let  represent the sequence 
of partial sums of the binomial series for . �is can be written as the summation 

 . 

In order to use the binomial expansion in the case where a, b, and t are hyperreal numbers, we need 
the *-transform of s, which is given by 

 . 

In this summation, we must use fixed pre-chosen equivalence class representatives for a, b, and t 
for every index k. 

1.5  Limits 

One final result of nonstandard analysis that is needed in this paper is the following statement about 
the limit of a function at a point or at infinity. 

Proposition 1.16. Let L be a real number. 

(a)  if and only if  for all . 

(b)  if and only if  for all positive infinite x. 

Proof. All parts are proven by contrapositive. 

(a) Suppose  for some . We want to show that there exists an  such that for 
any  there exists an x such that , but . Since , we have 

. If  is finite, choose , and if  is infinite, 
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choose  to be any positive real number. Let  be an equivalence class representative of 
z. Since , we know that 

  . 

 We also know that 

 . 

 Choose  and let . �en , but . �erefore 
. 

  Now we assume . �en there exists an  such that for every  
we can find x such that , but . We construct a sequence  by choos-
ing each  such that  and . �en we have  since for any 
positive real number r,  for all  where N is the least natural number satis-
fying . But  because  for all . So we have found 
a number infinitely close to a for which the function value is not infinitely close to L. 

(b) Suppose  for some positive infinite number z. We want to show that there exists 
an  such that for any  there exists an  such that . As in part 
(a), . So if  is finite, choose , and if  is infi-
nite, choose  to be any positive real number. Let  be an equivalence class representative 
of z. Since z is infinite, we know that 

 . 

 We also know that 

 . 

 Choose  and let . �en , but . �erefore  
  Now we assume . �en there exists an  such that for every  

we can find  such that . We construct a sequence  by choosing each 
 such that  and . �en  is infinite since for any positive real num-

ber r,  for all  . But  because  for all . So we 
have found an infinite number for which the function value is not infinitely close to L. 
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2  Development of New Hyperreal Structures 

�is section introduces the concept of superiority and the equivalence relation called local equality. 
Many structures which arise in the set of hyperreal numbers due to these concepts are examined 
along with their relationships to existing structures. Succeeding sections discuss applications of the 
properties of these new structures. 
 �e following notation is used in this and later sections. �e set of all infinite numbers in  
will be denoted by T, and the set of all infinitesimal numbers in  will be denoted by S. �e 
symbols  and  will be used to mean “less than or infinitely close to” and “greater than or infinitely 
close to” respectively. �e symbols  and  will be used to mean “less than but not infinitely close 
to” and “greater than but not infinitely close to” respectively. 

2.1  Orders of Numbers and the Superiority Relation 

�e order of a number and all subsequently dependent relations are based upon the choice of a 
positive infinite number . We do not give an explicit equivalence class representative for  since 
all calculations that we perform which involve  do not actually rely on its value. �us all of the 
relations and structures defined in this section have the same properties for every possible choice 
of . We need only remember that during any one calculation that  represents a constant positive 
infinite hyperreal number. �is method allows us to perform computations in the hyperreal numbers 
and at the same time abstract beyond the need to know anything about the ultrafilter used to con-
struct the hyperreals or the sequences that represent equivalence classes. All symbolic manipulation 
is done with real numbers and functions of . We use the letter  to represent  for any choice of 

. �e arbitrary nature of  and  allows us to show in a single calculation that certain properties 
hold for all positive infinite or infinitesimal numbers. 
 We first define an equivalence relation that partitions  into what are called zones. �is is 
done by considering the logarithm base  of each hyperreal number. We will use the symbol  to 
represent the function  on  as well as the function  on . 

Definition 2.1. �e order of a number , written , is defined as . 
�e order of 0 is defined to be . 

�e order of a number represents the size of the number on a scale which transcends infinitesimal, 
finite, and infinite numbers. Although this order depends upon the choice of ω, we have the follow-
ing property that does not depend on the value of ω, but only on the fact that ω is infinite. 
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Lemma 2.2. All numbers in  (i.e., all finite non-infinitesimals) have infinitesimal 
order. 

Proof. Let . Since x is not infinitesimal or infinite, there exist positive real 
numbers a and b such that . For every positive real number r, 
. Since the logarithm is a strictly increasing function, we have . So x 
has infinitesimal order. 

 Clearly, every infinite number has positive order and every infinitesimal number has negative 
order. What is interesting is that although most infinite and infinitesimal numbers do not have in-
finitesimal order, there are elements of T and S that do, and these numbers are given the following 
special names. 

Definition 2.3. If  and , then t is called semi-infinite. �e set of infinite numbers 
less the set of semi-infinite numbers is denoted by . 

Definition 2.4. If  and , then s is called semi-infinitesimal. �e set of infinitesi-
mal numbers less the set of semi-infinitesimal numbers is denoted by . 

An example of a semi-infinite number is  whose order is . All semi-infinitesimal 
numbers are reciprocals of semi-infinite numbers and vice-versa, so  is semi-infinitesimal. 
Properties of semi-infinite and semi-infinitesimal numbers are identified throughout this section. 
 �e order of each hyperreal number is used to define the following relation on . 

Definition 2.5. Given , we say a and b are isometric and write  if and only if 
. 

�e relation  is an equivalence relation since S is a group under addition. �e name “isometric” 
is used because two numbers whose orders differ only by an infinitesimal are of the same general 
size when considered as members of the vast infinitesimal and infinite extent of the set of hyperreal 
numbers. 
 We now introduce the superiority relation that is used to relate two numbers which are not 
isometric. 

Definition 2.6. Let  such that . If , then we say a is inferior to b 
and write , and if , then we say a is superior to b and write . 
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�e symbol  is used to mean “inferior to or isometric to”, and the symbol  is used to mean 
“superior to or isometric to”. Note that  for all nonzero . Also note that if  then 

. �is property will be useful in several proofs later in this paper. 
 If two numbers a and b in  are related by , , or , then multiplication of both by any 
nonzero  preserves this relation. 

Lemma 2.7. Let . �en  implies , and if  then  implies 
. 

Proof. Suppose . �en . Adding  to both sides, we have 
. �erefore , so . 

 Now suppose . �en , so by a similar argument  
and thus . 

Addition of equals does not preserve the relations , , and . Consider as an example that 
, but if we add  to both sides then we would have , which is not true. 

2.2  Zones and Worlds 

An equivalence class created by the equivalence relation  is given the following name. 

Definition 2.8. �e equivalence class induced by  containing  is called the zone about 
a. �is is written . We define . 

�e zone about a is the set of all numbers whose order is in the monad about . �us it is 
possible to express the zone about a as 

 . 

Note that since  for all , if  then . Also note that 
since ,  is the set of all elements of  having infinitesimal order. �erefore 

 contains all of the nonzero real numbers. 

�eorem 2.9.  is a multiplicative subgroup of . 

Proof. We need to prove closure and containment of inverses. Let . �en 
 and . �erefore, . So  and thus 

 is closed under multiplication.  contains multiplicative inverses since for all 
,  and S contains additive inverses. 
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 Every zone is a coset of . We therefore have the properties that for all , 
 and  is closed under multiplication by elements of . 

 All semi-infinite and semi-infinitesimal numbers are contained in . We can therefore 
express the set of semi-infinite numbers as , and we can express the set of semi-infini-
tesimal numbers as . 
 No zone (excluding ) is closed under addition since for any , , but 

. �e smallest additive subgroup of  containing  therefore contains 
every number which is inferior to a. �is set is given the following name. 

Definition 2.10. �e world about , denoted , is defined by  

We use the notation  to represent the set .  can be thought of as the 
interior of the set of zones contained in , and  can be thought of as the boundary of 
the set of zones contained in . We thus have for the zone about a the alternate notation  

�eorem 2.11.  and  are groups under addition for all . 

Proof.  and  because  for all . Each zone which is contained in 
 contains its own additive inverses. We are left with proving closure, which we first prove 

for the  case. 
 Let . Without loss of generality, we can assume that . We will show that 

. �is means we must show that . Let  
�en 

  (2.1) 

If  then . If  then . In both cases, . �erefore, from the 
above equation, . 
 Closure of  is proven in the exact same manner since for  with , 

. 

 An important observation is that if  then  since otherwise, if  then 
, a contradiction. �is is the fundamental concept behind what we soon define to be 

local equality. 
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�eorem 2.12.  and  are rings if and only if . 

Proof. Assume . By �eorem 2.11,  and  are additive subgroups of . We 
need only prove closure under multiplication. Let . Since  and both  and 

,  and . �erefore, . So  and 
 is thus closed under multiplication. For , we have the simpler situation that 

 and . �erefore,  and we have . 
 Now suppose that . �en . So we have  and 
thus . �erefore  is not closed under multiplication. Also,  is not closed 
since if we let , then . 

 It turns out that for any two rings of the type mentioned in �eorem 2.12, the smaller subring 
is an ideal of the larger. 

�eorem 2.13. Let  such that . �en 

(a)  

(b)  

(c)  

(d)  

Proof. 

(a) Let  and . �en  (since ) and . So  
, which implies , and thus . 

(b) Identical to (a). 

(c) Similar to (a), except . So , which implies . 

(d) Identical to (c). 

�eorem 2.14.  is a maximal ideal of . 

Proof. Suppose there exists an ideal I of  with . �en there exists  
such that  and is therefore an element of . But by �eorem 2.9,  contains 
multiplicative inverses, so x is a unit and thus . So  must be maximal. 



18 

 We have now constructed a field  considerably smaller than  that still contains 
an isomorphic copy of the real numbers through the map  and also contains 
infinite and infinitesimal numbers such as  and . 

2.3  Local Equality 

�e concept of local equality involves choosing a “level” to work on and equating any two numbers 
in  that differ by an insignificant amount with respect to this level. For example, on the finite 
level (i.e., the level of 1), any two numbers that differ by a sufficiently small infinitesimal are con-
sidered to be locally equal. �e precise definition is as follows. 

Definition 2.15. Let  with . We say a is locally equal to b on the level of  and 
write  if and only if . 

 Local equality on the level of  is an equivalence relation since  for all  and  
is closed under addition by �eorem 2.11. One immediate observation is that if  then . 
If , then obviously  for any . Also, it follows immediately from Lemma 2.7 
that if  then . 
 If two numbers are locally equal on the level of  then they are also locally equal on the level 
of any element of . Replacing the level representative with an isometric number does not 
change anything. Local equality is also preserved if the level representative is replaced by a superior 
number. In general, if  and , then . 

Lemma 2.16. If  then . 

Proof. If  then . So we can write  where . Since , we 
know . 

 An immediate consequence of this lemma is that if  then . �is also lets us make the 
statement that if  then . �is is because if we divide both sides of  by a, we have 

. �en dividing both sides by b gives us . By the lemma, this is equivalent to 
. �is property of local equality is useful in Section 4. 

 Here are some example local equalities. 
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Note that in the last example given above, even though  is an infinitesimal, it is too large to 
be ignored on the finite level. �e reason is that  is a semi-infinitesimal and semi-infinitesi-
mals are not inferior to any finite number. 
 �e equivalence classes of local equality on the level of 1 are analogous to monads. Numbers 
that are in  but not in  are exactly those which differ from a by a semi-infinitesimal. 
So  implies , but the converse is not necessarily true. 

2.4 Summary 

All of the structures and relations introduced in this section depend upon a positive infinite number 
 whose exact value is left undefined but is considered to be held constant throughout any state-

ment, proof, calculation, etc. Whenever the number  appears in an expression, it is assumed to be 
the same  that any relations appearing in the expression such as inferiority and local equality 
depend on through the order function. 
 �e arbitrary nature of  allows us to conclude statements such as if  independently 
of the choice of , then  for all positive infinite numbers t. �is becomes an invaluable 
tool when used in conjunction with local equality for evaluating limits which assume an indetermi-
nate form and also for testing infinite series for convergence. �ese topics are discussed in the next 
two sections. 
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3 Evaluation of Limits 

We now use the concept of local equality to develop a system for evaluating certain types of limits 
at points where they assume indeterminate forms. �e methods presented are alternatives to 
l’Hôpital’s Rule which are generally easier to use and in most cases allow much faster computation. 
Several examples are given which demonstrate the new methods on limits which assume the inde-
terminate forms , , , and . 

3.1  Preliminary Theory 

Nonstandard analysis tells us that  exists and is equal to L if  for all positive 
infinite  (see Section 1.5). When evaluating limits of this form, we will be able to show that 

 independently of the choice of . �us, in a single calculation, we will be able to show 
that  for every infinite number . �is implies that . 
 A similar method will be used for limits of the form . In this case, we need to show 
that  for all infinitesimal x. We will be able to obtain  independently of the 
choice of α, from which is follows that . 
 �e way in which we will use local equality at first is by using the fact that given  
if we choose , then every term of  evaluated at a belongs to a different zone. �us 
we have properties such as  is locally equal on its own level to the highest degree term of  
evaluated at . 
 �e following lemma becomes useful in several places where we are working with infinite 
series of infinitesimals. (�e * is omitted from the summations in this section—all summations are 
nonstandard.) 

Lemma 3.1. If  is an infinitesimal, then . 

Proof. We have the equation 

  (3.1) 
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�is tells us that . Since  itself is a summand, . 

 In many of the examples in this section, we use power series to represent exponential and trig-
onometric functions. �ese series are then evaluated at , making it possible to use the following 
lemma. 

Lemma 3.2. Suppose  and let  be a sequence of real numbers such that  is 
bounded by some real number m. �en for any finite k, . 

Proof. We need to show that . We can write this sum as 

  (3.2) 

By Lemma 3.1, . �erefore, 

 . (3.3) 

�is tells us that 

 . (3.4) 

Since , , so the entire sum is inferior to . 

�is lemma allows us to make statements such as . 

3.2  Limits of the Form 0/0 and ∞/∞ 

For limits which assume the form  or , we need to examine the properties of local equality 
as it pertains to quotients . If , then , and if , then  is infinite. For the 
remaining case, , we have the following theorem. 
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�eorem 3.3. Let , , , and  be nonzero elements of . Suppose we have the local 
equalities  and . �en . 

Proof. Write  where  and write  where . Multiplying  by 
 and  by , we have the relations  and . Since  is closed 

under addition, . By Lemma 2.16, . So we can write 

 . (3.5) 

�e left side of this equation can be rewritten by adding and subtracting  to obtain 

 . (3.6) 

Replacing  with  and  with  and then dividing both sides by  (using Lemma 
2.7), we have 

 . (3.7) 

�e left side of this equation is simply , so the proof is complete since this is now 
the definition of . 

 A trivial example of the application of �eorem 3.3 is a quotient of polynomials. If we have 
, then we substitute  for x in both  and . If , which is true 

if and only if p and q have the same degree, then the limit is equal to the quotient of the leading 
coefficients of p and q. Following are two slightly less trivial examples in which trigonometric 
functions appear. 

Example 3.4.  

Solution. We replace the sine function with its power series and evaluate at α to obtain 

 . 

By Lemma 3.2,  and , so we can apply �eorem 3.3 as follows. 

 . 

Since this local equality holds for any choice of , we know . 
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A similar example involving the cosine function is given next. 

Example 3.5.  

Solution. As above, we replace the cosine function with its power series and evaluate at  to 
obtain 

 . 

�is time we have  and , so applying �eorem 3.3, 

 . 

Again, this local equality is independent of . So . 

 Evaluating the limit in Example 3.5 would require two applications of l’Hôpital’s rule. How-
ever, using local equality enables the limit to be evaluated in a single step once the trigonometric 
function is replaced by its power series. 

3.3  Limits of the Form 1∞ 

Far more interesting situations arise when we examine limits which assume the form . For this 
case, we need the following theorem. 

�eorem 3.6. Let  and suppose  for some positive infinite number . 
�en for any  satisfying , we have . 

Proof. Let  and assume . Expanding  with the binomial theorem, we obtain 

 . (3.8) 

For , the summand is simply . We wish to show that the sum of the terms for  is 
inferior to . So we rewrite equation (3.8) as 

  (3.9) 

and show that this sum for  satisfies the hypothesis of Lemma 3.1. (We will actually be 
applying this lemma twice.) 
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 �e binomial coefficient  is a degree k polynomial in t. 
When the numerator is expressed as a sum of powers of t, the coefficient of the degree j term 
is given by the Stirling number of the first kind  where  if  or . �us 
we can write equation (3.9) as 

 . (3.10) 

Since , we can write  where . Replacing  with  and factoring  out of 
the inner sum, we have 

 . (3.11) 

We now reverse the order of summation for the inner sum through the map  so that 
the terms are arranged in the order necessary for the application of Lemma 3.1. �is gives us 

 . (3.12) 

For convenience, we define 

 . (3.13) 

When k is finite,  since it is a finite sum of elements of . �e Stirling numbers of the 
first kind obey the recurrence relation 

 . 

Starting with , an easy induction argument shows that  for all k and j. So 
when k is infinite, we have 

  (3.14) 
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Lemma 3.1 applies to the last sum of this equation giving us . �erefore, 
. Since this expression is greater than , we must have . Substituting  

into equation (3.12) and factoring  out of the summation, we have 

 . (3.15) 

Since  for all k, we know 

  (3.16) 

Since  and , we have . So Lemma 3.1 applies to this sum and we obtain 
. �us, . Calling this sum , we now have 

 where . So  and the theorem is proven. 

 �e simplest application of �eorem 3.6 is to the evaluation of . When we 
substitute  for x, we have . Since , we have . 
�erefore, by �eorem 3.6 and since , we have , which is equivalent to 

. �is happens independently of our choice of , so . 
 �eorem 3.6 tells us much more than this. In fact, it is now easy to show that for any  
satisfying , the limit  does not differ from . 
 We can also use �eorem 3.6 to more easily evaluate limits of this form where c is a function 
of x instead of a constant. �is is demonstrated in the first example below. 

Example 3.7.  

Solution. We first evaluate at  to obtain the expression 

 . 

Since , local equality on the level of  is equivalent to local equality on the level 
of . So , from which �eorem 3.6 tells us that . We 
also have for the denominator , so by �eorem 3.3, 
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 . 

�erefore, the value of the limit is 1. 

Example 3.8.  

Solution. Evaluating at , we have 

 . 

Using the identity , this can be rewritten as 

 . 

Adding the power series for the exponentials together, we obtain 

 . 

Even though the above expression is not the power series for , it is locally 
equal to this power series on the level of . So we can apply �eorem 3.6 to obtain 

 . 

�erefore, the value of the limit is . 

Example 3.9.  

Solution. Evaluating at  and substituting power series, we have 

 . 

For the exponent we can use �eorem 3.3 to obtain  
since  and . So we write  where . Now for the base we 
have . All of this shows that  satisfies the conditions for �eo-
rem 3.6. Since  and , �eorem 3.6 tells us that 



 27 

  

Since ,  is an infinitesimal which we will call . We now have 

 . 

Using Lemma 3.1, 

  

So we finally have 

 . 

�erefore, the value of the limit is . 

 �ese examples would require a great deal more work if we were to use l’Hôpital’s rule to 
evaluate the limits. However, to one who is adept at using �eorems 3.3 and 3.6, these limits can 
be evaluated with far less effort. 

3.4  Uncompensated Square Completion 

Another interesting situation arises for some limits which assume the form . �e example 
following the next theorem shows that we may sometimes add a number to an expression in order 
to complete a square without ever subtracting the number elsewhere—that is, we never have to 
compensate for the change to the expression. 

�eorem 3.10. Let t be a positive infinite number and let . �en . 

Proof. Expanding  with the binomial theorem we have 
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 . (3.17) 

Since  for all k, we can write 

 . (3.18) 

Since ,  is an infinitesimal. So Lemma 3.1 applies to this sum giving us 
 We now have 

 . (3.19) 

Since , . �erefore, from equation (3.17),  where . So 
. 

Example 3.11.  

Solution. Evaluating at , we have . �eorem 3.10 tells us that for any 
, we must have . So we choose the only value of c that 

is of any advantage—the one which completes the square under the radical. Setting , we 
have 

  

�erefore, the value of the limit is 3. 

�is method of uncompensated square completion provides a much faster alternative to the standard 
method of multiplying the expression by its conjugate. 
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4 Infinite Series 

In this section we present two new tests for the convergence of infinite series which are analogs of 
the comparison test and the limit comparison test of standard analysis. Once these tests have been 
introduced, we examine some useful facts which allow easier application of the tests and present 
some examples. 

4.1 Convergence Tests 

Both of the new tests determine the convergence of a series  by examining the properties 
of . �e first test checks to see whether  for some convergent series 

. 

�eorem 4.1 (Order Comparison Test). Let  and  be standard positive-valued func-
tions. If the series  converges and  (independent on the choice of ) 
then the series  also converges. 

Proof. Since , we know that  and thus  is an 
infinitesimal. Since this happens independently of the choice of , this implies that 

. �erefore, given any , there exists an  such that for all  
. �us for all , . Since  converges,  also 

converges by the comparison test. 

Note that the contrapositive of this theorem states that if the series  diverges and 
, then the series  also diverges. 

 Let  for some standard positive-valued function g. It immediately follows from 
the order comparison test that if  then the series  converges since in this case we 
would have  for some real number p with . If , then the series 

 diverges since in this case we would have  for some real p with  
 For the remaining case, , we cannot conclude anything from the order comparison test. 
�is means that if , then whether  converges tells us nothing about 
whether  converges. However, if  then we can infer the convergence of 
one series from the other. For this situation, we have the following test. 
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�eorem 4.2 (Local Equality Test). If f and g are standard positive-valued functions that sat-
isfy  (independent on the choice of ), then the series  and 

 either both converge or both diverge. 

Proof. Since , we know that , which implies that 
. Since this property is independent of the choice of , this means that 

. �erefore, by the limit comparison test, the series  and 
 either both converge or both diverge. 

4.2 Using the New Tests 

It is usually more convenient to think of an infinite series as a sum of the reciprocals of a function 
evaluated at each natural number. Fortunately, the order comparison test and local equality test 
work equally well for this situation. �is is because  implies  
and  implies . 
 In many cases when the order comparison test cannot be used, it will be possible through local 
equality to reduce the number  to a number of the form  where . When this 
happens, the following extension to the p-series test is useful. We use the notation  to mean the 
natural logarithm taken n times (e.g., ). 
 Let  and let m be the least natural number for which  is real and greater than 1. �en 
the series 

  

converges if and only if . We show this by using the integral test. �e integral 

  

can be evaluated by making the substitution , for which we have  
. �is gives us the integral 

 , 

which converges if and only if . 
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 We conclude this section with a few examples. 

Example 4.3.  

Solution. Let . We substitute  for n and notice 

 . 

So if we can find a function  such that  for which we know whether 
 converges, then we can use the local equality test to determine whether 
 converges. By �eorem 3.3, 

  

since  and . Because  diverges, the local equality 
test tells us that the series that we are testing also diverges. 

 �e next example demonstrates the procedure for dealing with factorials. As shown, the Stirling 
approximation for the factorial gives a good representation of the size of . 

Example 4.4.  

Solution. From Stirling’s approximation to , we know that 

 . 

�erefore . Using this, we can write 

 . 

Since , the exponent of  in this last expression is still an infinite 
number, so . �erefore, by the order comparison test, the series 
converges. 
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 �e above example may seem like a lot of work for such a simple summand. �e intent was to 
demonstrate that  for any finite number p. �is fact will usually be enough to tell quickly 
whether a series containing factorials converges. 
 We finish with a short example. 

Example 4.5.  

Solution. �e local equality test tells us that this series converges if and only if the series 
 converges, which it does by the earlier remark pertaining to the extended 

p-series test. 
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List of Notation 

  almost everywhere 
  

 *-transform of A;  
 Hypernatural numbers 
 Hyperintegers 
 Hyperrational numbers 
 Hyperreal numbers 

T Set of all infinite numbers 
S Set of all infinitesimals 

 Set of infinite numbers in A;  
 x is infinitely close to y;  
  or  
  or  
  and  
  and  
 Monad about a;  
 Galaxy about a;  

 Order of a;  
  
  

 x is isometric to y;  
 x is inferior to y;  
 x is superior to y;  
  or  
  or  

 Zone about a;  
 World about a;  
  

 x is locally equal to y on the level of ;  
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