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Abstract 

This paper presents new concepts in the use of infinite and infinitesimal numbers 
in real analysis. The theory is based upon the hyperreal number system devel-
oped by Abraham Robinson in the 1960's in his invention of “nonstandard analy-
sis”. The paper begins with a short exposition of the construction of the hyperreal 
number system and the fundamental results of nonstandard analysis which are 
used throughout the paper. The new theory which is built upon this foundation 
organizes the set of hyperreal numbers through structures which depend on an 
infinite base logarithm. Several new relations are introduced whose properties 
enable the simplification of calculations involving infinite and infinitesimal 
numbers. The paper explores two areas of application of these results to standard 
problems in elementary calculus. The first is to the evaluation of limits which 
assume certain indeterminate forms. The second is to the determination of con-
vergence of infinite series. Both applications provide methods which greatly re-
duce the amount of computation necessary in many situations. 
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Overview 

n the 1960's, Abraham Robinson developed what is called “nonstandard 
analysis”, and in doing so provided a rigorous foundation for the use of infi-
nitesimals in analysis. A new number system known as the set of hyperreal 

numbers was constructed which includes the set of real numbers and also con-
tains infinite and infinitesimal numbers. This paper begins with the construction 
of the hyperreals as a set of equivalence classes of sequences of real numbers. 
Included in this introductory section is the method by which relations defined on 
the real numbers are extended to relations on the hyperreal numbers. Through 
these extensions, it is possible to prove statements that hold true over the hyper-
real numbers which are the “nonstandard” equivalents of statements that hold 
true over the real numbers. In nonstandard analysis, the proofs of these state-
ments are usually facilitated by the utilization of what is called the transfer prin-
ciple. This concept, however, requires a great deal of development of rigorous 
logic which will not be needed in the remainder of the paper. Therefore, the 
transfer principle is not used in the introductory section at all, and alternate 
proofs of nonstandard results are instead given. 
 In Section 2, we begin the study of new hyperreal structures which organize 
the set of hyperreal numbers into classes called zones, and we introduce the no-
tions of superiority and local equality. These concepts depend on the logarithms 
of the hyperreal numbers taken to a fixed infinite base. We will be using infinite 
and infinitesimal numbers in such a way that our calculations will not require 
knowledge of how the hyperreal number system was constructed. Nor will our 
calculations require us to know what specific member of the set of hyperreals 
that we are using as the infinite base of our logarithm—knowing only that the 
number is infinite will suffice. 
 Once the theory has been developed in Section 2, we proceed in Sections 3 
and 4 to present applications in two areas. The first application is to the evalua-
tion of certain limits which assume the indeterminate forms 0 0, ∞ ∞ , 1∞, and 
∞ −∞ . The methods presented will provide alternatives to l’Hôpital’s rule which 
generally allow much more efficient computation. The second application is to 
the determination of the convergence of infinite series. Two new convergence 
tests will be presented which are analogous to the comparison test and limit com-
parison test. As with limit evaluation, these tests significantly reduce the amount 
of computation in many situations. 
 
 

I 



 3 

1 Introduction to Nonstandard Analysis 

his section presents the reader with the fundamentals of nonstandard 
analysis which are used throughout the remainder of this paper. We begin 
with the ultrapower construction of the set of hyperreal numbers and then 

proceed to introduce several relations and algebraic structures which are defined 
on this set. This section consists only of the necessary background information 
which can be found in any introductory text on nonstandard analysis, most nota-
bly [3]. Many of the proofs included in this section can also be found in the lite-
rature, the exceptions being those which rely on the transfer principle. 

1.1 Construction of the Hyperreal Number System 
The goals of the construction of the hyperreal number system are to build a field 
which contains an isomorphic copy of the real numbers as a proper subfield and 
also contains infinite and infinitesimal numbers. Furthermore, it is desired that 
the numbers in this new field obey all of the same laws which hold true over the 
real numbers. A field having these properties is constructed by using a free ultra-
filter to partition the set of all sequences of real numbers into equivalence classes. 
It is then these equivalence classes which are the elements of the set of hyperreal 
numbers. 
 Before presenting the actual construction of the hyperreals, we include the 
definition of a filter. 

Definition 1.1. A filter F on a set S is a nonempty collection of subsets of S 
having the following properties. 

(a) ∅∉F  

(b) If A∈F  and B∈F  then A B∩ ∈F  

(c) If A∈F  and A B S⊆ ⊆  then B∈F  

Note that by (c), a filter F on S always contains S, and that by (a) and (b), no two 
elements of F are disjoint. 

T 
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 An ultrafilter on an infinite set S is a maximal filter on S. The existence of an 
ultrafilter follows from Zorn’s Lemma. A filter F on S is an ultrafilter if and only 
if it has the following property. 

(d) If A S⊆  then either A∈F  or S A− ∈F  

An ultrafilter U on an infinite set S is called fixed or principal if there exists a S∈  
such that { }|A S a A= ⊆ ∈U . Ultrafilters which are not fixed are called free. An 
important fact is that free ultrafilters cannot contain any finite sets. By (d), this 
implies that if U is free then every cofinite subset of S is contained in U. 
 We now construct the set of hyperreal numbers and prove that it is a linearly 
ordered field. We begin the construction by choosing a free ultrafilter U on the 
set of natural numbers N. The ultrafilter U is not explicitly defined since it does 
not matter which free ultrafilter on N that we use. The set of all free ultrafilters 
on N determines a set of isomorphic fields from which we can choose any mem-
ber to be the set of hyperreal numbers. Using U, the hyperreals are constructed by 
considering the set of all sequences of real numbers indexed by N and defining 
the following relation on this set. 

Definition 1.2. Given two sequences of real numbers na  and nb , 
n na b≡  if and only if { }| n nn a b∈ = ∈UN . The entries of the sequences 
na  and nb  are then said to be equal “almost everywhere”. 

 The phrase “almost everywhere” (abbreviated a.e.) is used to signify that the 
entries of a sequence have a certain property on some set in the ultrafilter U. For 
instance, if the sequence na  has the property that na  is an integer for all n in 
some member of U, then na  is said to be an integer almost everywhere. 

Proposition 1.3. The relation ≡ is an equivalence relation. 

Proof. Let na , nb , and nc  be sequences of real numbers. n na a≡ , and 
thus ≡ is reflexive, since ∈UN . Because equality on the reals is symmetric, 
if n na b≡  then n nb a≡ , and thus ≡ is symmetric. For transitivity, sup-
pose n na b≡  and n nb c≡ . Let { }| n nA n a b= ∈ =N  and 

{ }| n nB n b c= ∈ =N . Then A B∩ = { }| n nn a c∈ =N . Since A and B are ele-
ments of the ultrafilter U, A B∩ ∈U . Therefore, n na c≡ . 

 The set of hyperreal numbers, which is denoted by *R , is defined to be the 
set of all equivalence classes induced by the equivalence relation ≡. We will use 
the notation [ ]na  to represent the equivalence class containing na . 
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 Addition, multiplication, and an ordering are defined on *R  as follows. 

Definition 1.4. Let [ ] [ ], *n na b ∈ R . The operations + (addition) and ⋅  
(multiplication) and the relation < (less than) are defined by 

(a) [ ] [ ] [ ]n n n na b a b+ = +  

(b) [ ] [ ] [ ]n n n na b a b⋅ = ⋅  

(c) [ ] [ ]n na b<  if and only if { }| n nn a b∈ < ∈UN  

Proposition 1.5. The operations + and ⋅ , and the relation < are well-defined. 

Proof. Suppose [ ] [ ]n na b=  and [ ] [ ]n nc d= , and let A =  { }| n nn a b∈ =N  
and { }| n nC n c d= ∈ =N  (thus ,A C∈U ). Then 
{ }| n n n nn a c b d A C∈ + = + = ∩ ∈UN . So the two sums are equal elements of 
the hyperreals. The same argument holds true for multiplication. 
 Now suppose [ ] [ ]n na c<  and let { }| n nK n a c= ∈ < ∈UN . Then the 
set on which n nb c<  contains K A∩  and is therefore in U. So [ ] [ ]n nb c< . 
Let { }| n nL n b c= ∈ <N . Then the set on which n nb d<  contains L C∩  and is 
therefore in U. Thus [ ] [ ]n nb d< . 

 We now claim that the set of hyperreal numbers combined with the opera-
tions and ordering given in definition 1.4 is a linearly ordered field. 

Proposition 1.6. The structure ( )* , , ,+ ⋅ <R  is a linearly ordered field. 

Proof. In order to show that *R  is a field, we need only prove that *R  con-
tains inverses since the associative, commutative, and distributive laws as 
well as closure are inherited from the real numbers. Let [ ] *na ∈ R such that 
[ ] [ ]0,0,0,na ≠ … . Then the set { }| 0nn a∈ = ∉UN . Thus we know that the 
complement of this set is in U. So define nb  by 

 
0, if 0;

1 , if 0.

n

n

n n

a
b

a a

=⎧⎪= ⎨
≠⎪⎩

 

Then the product [ ][ ]n na b  is equivalent to 1 since { }| 1n nn a b∈ = =N  
{ }| 0nn a∈ ≠ ∈UN . Therefore na  is invertible and *R  is a field. 
 Now let [ ] [ ], *n na b ∈ R  such that [ ] [ ]n na b≠ . To prove that *R  is 
linearly ordered, we must show that either [ ] [ ]n na b<  or [ ] [ ]n nb a< . 
Let { }| n nA n a b= ∈ <N , { }| n nB n b a= ∈ <N , and { }| n nE n a b= ∈ =N . Since 
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[ ] [ ]n na b≠ , E∉U . So the complement of E, which is A B∪ , is in U. If 
A∈U , then [ ] [ ]n na b< . If A∉U , then B E∪ ∈U , in which case 
( ) ( )A B B E B∪ ∩ ∪ = ∈U , so [ ] [ ]n nb a< . Thus [ ]na  and [ ]nb  are or-
dered. 

 Now that we have shown that *R  is a linearly ordered field, we wish to show 
that *R  has a proper subfield which is isomorphic to R. We embed the reals in 
the hyperreals by defining the map : *θ →R R by 

 ( ) [ ], , ,r r r rθ = … . 

To show that θ maps R to a proper subfield of *R , note that [ ]1,2,3,…  is not 
equivalent to the image of any real number. This equivalence class is actually an 
example of an infinite number as is defined below. 

1.2 Infinite and Infinitesimal Numbers 
Whether a number is infinite or infinitesimal is independent of the number's sign, 
so the definitions of infinite and infinitesimal numbers will involve absolute val-
ues. Absolute value is a function that is already defined on the real numbers 
which we need to extend to the hyperreal numbers. To do this, we simply apply 
the absolute value entrywise to an equivalence class representative in *R . Much 
more will be said about extending functions from the real numbers to the hyper-
real numbers shortly, but right now we only need the following definition. 

Definition 1.7. For all [ ] *na ∈ R, [ ] [ ]n na a= . 

Note that this definition is equivalent to the hyperreal analog of the definition of 
absolute value on the reals, 

 [ ]
[ ] [ ]

[ ] [ ]

, if 0;

, if 0.

n n

n

n n

a a
a

a a

≥⎧⎪= ⎨
− <⎪⎩

 

This is because if [ ] 0na ≥  then n na a=  on the same set in the ultrafilter for 
which 0na ≥ , and if [ ] 0na <  then n na a− =  on the same set in the ultrafilter for 
which 0na < . 
 From this point on, we will use single letters to denote elements of *R . When 
we speak of a real number *r∈ R , we mean the equivalence class [ ], , ,r r r … . 
Although technically speaking, the sets R, Q, Z, and N are not true subsets of the 
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hyperreals, we will use these symbols to refer to the images of these sets embed-
ded in *R . 
 We can now define what is means for a number to be infinite or infinitesimal. 

Definition 1.8. Let *a∈ R . Then a is infinite if and only if a r>  for every 
positive real number r. If a is not infinite then it is finite. We call a infinite-
simal if and only if a r<  for every positive real number r. 

Note that the set of finite numbers is a subring of *R  and the set of infinitesimals 
is an ideal of the finite numbers. More importantly, note that the set of hyperreal 
numbers is nonarchimedean. Not every bounded subset of *R  is guaranteed to 
have a least upper bound or greatest lower bound. For example, the set of infinite 
numbers is bounded below by any finite number but has no greatest lower bound. 
 We now introduce an equivalence relation which associates numbers which 
only differ by an infinitesimal. 

Definition 1.9. Given , *x y∈ R , x and y are near or infinitely close if and on-
ly if x y−  is an infinitesimal. In this case, we write x y . The equivalence 
classes induced by  are called monads. Thus, the monad about a number 

*a∈ R , written ( )m a  is defined by ( ) { }* |m a x x a= ∈ R . 

*R  is also partitioned into classes whose elements differ by finite amounts. 

Definition 1.10. The galaxy about a number *a∈ R , written ( )G a , is defined 
by ( ) { }* |  is finiteG a x x a= ∈ −R . 

 Using monads and galaxies, we can use ( )0m  to represent the set of all infi-
nitesimal numbers and ( )0G  to represent the set of all finite numbers. As shown 
below, the set of real numbers is isomorphic to the quotient ring ( ) ( )0 0G m . 
 Numbers in *R  which are not images of real numbers are called nonstan-
dard. Nonstandard finite numbers are always infinitely close to exactly one real 
number, which is called its standard part. 

Proposition 1.11. Let a be a finite hyperreal number. Then there exists a 
unique real number r such that r a . 

Proof. Let { }|A x x a= ∈ ≤R . Since a is finite, A is nonempty and is 
bounded above. Let r be the least upper bound of A. For any real 0ε > , 
r Aε− ∈  and r Aε+ ∉  and thus r a rε ε− ≤ < + . So r a ε− ≤  from which is 
follows that r a . To show that this r is unique, suppose that there exists a 
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real number s such that s a. Then since  is transitive, s r . So s r ε− <  
for every real 0ε > , and thus s r= . 

Definition 1.12. Let ( )0a G∈ . Then the standard part of a, denoted by ( )st a  
or a° , is the real number r such that a r . The function st is called the stan-
dard part map. 

The standard part map is easily shown to be an order preserving homomorphism 
from ( )0G  onto R with kernel ( )0m . The quantity ( )stx x−  is sometimes called 
the nonstandard part of x. 

1.3 Relations and *-Transforms 
We now discuss the method through which functions defined on the set of real 
numbers are extended to the hyperreals. The method actually applies to any arbi-
trary relation defined on R, the set of which includes all of the functions defined 
on R. The process of extending a relation from R to *R  is called a *-transform 
for which the general definition is next given. 

Definition 1.13. Let P be an n-ary relation on R. Then the *-transform of P, 
denoted by *P  is the set of all n-tuples ( )[ ] ( )[ ] ( )[ ]( )1 2, , , ni i ia a a…  
( )* n∈ R  satisfying ( ) ( ) ( )( ){ }1 2| , , , ni i ii a a a P∈ ∈ ∈U…N . 

 An n-ary relation on R is simply a subset of nR . Thus, unary relations on R 
are just subsets of R. Equality, the ordering given by <, and functions of one va-
riable are examples of binary relations. In order to acquire a more intuitive feel-
ing for how relations on R are extended to *R , we consider a few examples. 
 Let A⊆ R. Then A is a unary relation on R, so *A consists of those elements 
[ ] *na ∈ R such that { }| nn a A∈ ∈ ∈UN  (i.e., na A∈  almost everywhere). It 
should now be clear why the notation *R  is used to represent the set of hyperreal 
numbers, for if A = R then { }| nn a A∈ ∈ = ∈UN N , so *R  consists of all equiva-
lence classes represented by any sequence of real numbers. 
 The set *N  is called the set of hypernatural numbers and consists of the 
numbers [ ] *na ∈ R for which na ∈N almost everywhere. Likewise, 

[ ]{ }* * |  a.e.n na a= ∈ ∈Z R Z  and [ ]{ }* * |  a.e.n na a= ∈ ∈Q R Q . These are 
called the hyperintegers and hyperrationals respectively. 

Proposition 1.14. Let S ⊆R be a set which contains an infinite subset of N. 
Then *S  contains infinite numbers. 
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Proof. Let A be an infinite subset of N contained in S. We construct an infi-
nite number in *S  as follows. Let 1a  be the least element of A and then 
choose each na  to be the least element of the set { }1 2 1, , , nA a a a −− … . Since A 
has no upper bound, the sequence na  must have the property that given any 
positive real number r, there exists an N ∈N such that for all n N> , we have 

na r> . Thus na r>  almost everywhere, satisfying the requirement for 
[ ] *na S∈  to be infinite. 

 Given a set *S ⊆ R , we use the notation S∞  to represent the set of infinite 
numbers in S. Thus, * ∞Z  is the set of infinite hyperintegers in *R . 
 Let us consider equality on R for a moment as a set of duplets and write 
( ),a b E∈  if and only if a b= . Then *E  is the set of all duplets 
[ ] [ ]( ) ( )2, *n na b ∈ R  satisfying { }| n nn a b∈ = ∈UN , which is exactly how we 

defined equality on the hyperreals. 
 A function f on R of n variables can be thought of as a set of ( )1n + -tuples 
having the property that if ( )1 2, , , ,nc c c a f∈…  and ( )1 2, , , ,nc c c b f∈… , then 
a b= . The *-transform of f is the set of all ( )1n + -tuples of the form 
( )[ ] ( )[ ] ( )[ ] [ ]( ) ( ) 1

1 2, , , , * n
n ni i ic c c a +∈… R  satisfying 

 ( ) ( ) ( )( ){ }1 2| , , , , .n ii i ii c c c a f∈ ∈ ∈U…N  

So if f is a function of one variable, then [ ]( ) ( )[ ]* i if c f c= . That is, we just 
let f operate entrywise on an equivalence class representative of a number in *R . 
 Note that operations such as addition and multiplication are actually func-
tions of two variables. In the next section, we will be taking logarithms of hyper-
real numbers using a hyperreal number for the base. The logarithm is also a 
function of two variables so we have 

 [ ] [ ]*log log .
nn n b nb a a= ⎡ ⎤⎣ ⎦  

If we choose [ ] [ ]1,2,3,nb = …  and [ ] [ ]2,2,2,na = … , then the first entry of 
[ ] [ ]*log

n nb a  is 1log 2, which is undefined. This is acceptable, however, since 
we can assign any value we wish to the first entry and the function will still hold 
true on a set in the ultrafilter U. As long as the *-transform of a function is de-
fined almost everywhere for the entries of an equivalence class representative 

na , it is defined for [ ]na . 
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1.4 Sequences and Series 
Sequences and series of hyperreal numbers will be an important area of study 
later in this paper. When we speak of a sequence of hyperreal numbers, we are 
actually talking about a sequence of sequences of real numbers, and this se-
quence is indexed not by the natural numbers, but by the hypernatural numbers. 
Below, we examine how sequences of real numbers indexed by the natural num-
bers are *-transformed to sequences of hyperreal numbers indexed by the hyper-
natural numbers. 
 Let |ns n∈N  be a sequence of real numbers. This sequence is actually a 
function :s →N R  where ( ) ns n s= , so we can think of ns  as the set of duplets 
( ) ( ) ( ){ }1 2 31, , 2, , 3, ,s s s … . The *-transform of s is the function * :* *s →N R 

where [ ]( ) ( )[ ]* n ns a s a=  for any [ ] *na ∈ N. The sequence * | *ns n∈ N  is an 
extension of the sequence |ns n∈N  in that for any n∈N, * ns  is simply the im-
age of ns  in the hyperreals. 
 If a sequence ns  tends to a limit in the real numbers, then the sequence 
* ns  tends to the same limit in the hyperreal numbers. This is proven shortly, but 

first we need to discuss a little notation. The symbol ∞  is used in the real number 
system to denote that which is potentially arbitrarily large. Thus the expression 
limn ns→∞  denotes the value that ns  approaches as n becomes an arbitrarily large 
natural number. In the hyperreal number system, the symbol ∞  has the same 
meaning, but by arbitrarily large, we mean even larger than any infinite number 
in *R . So the expression lim *n ns→∞  denotes the value that * ns  approaches as n 
becomes an arbitrarily large hypernatural number. We now have the following 
proposition. 

Proposition 1.15. Suppose that limn ns L→∞ =  for some real number L. Then 
lim *n ns L→∞ = . 

Proof. The fact that limn ns L→∞ =  means that given 0ε >  there exists an 
N ∈N such that for all n N> , ns L ε− < . Now let ε be a positive hyperreal 
number and let iε  be an equivalence class representative of ε. We define 
the hypernatural number [ ]iN N=  by choosing iN  to be any natural number 
for which n is L ε− <  for all in N> . Then for any hypernatural number n N> , 
* ns L ε− < . So lim *n ns L→∞ = . 

 More important to this paper are infinite series of hyperreal numbers. We 
define an infinite series in terms of its sequence of partial sums. Consider the 
standard sequence 
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 ( ) ( )1 2 1 2
1

, , , , , , , , ,
n

m m
k

s n x x x a k x x x
=

=∑… …  

which is defined as a function of the natural index n and real numbers 
1 2, , , mx x x… . The sum of the infinite series is represented by 

( )1 2lim , , , ,n ms n x x x→∞ … . The *-transform of s is the sequence 

 ( ) ( )1 2 1 2
1

* , , , , * * , , , , ,
n

m m
k

s n x x x a k x x x
=

= ∑… …  

where 1 2, , , mx x x…  are hyperreal numbers and the right hand side represents the 
definition of the nonstandard summation from 1 to a hypernatural number n. This 
summation is written in equivalence class form as 

 ( ) ( ) ( ) ( )( )1 2 1 2
1 1

* * , , , , , , , , .
inn

m mi i i
k k

a k x x x a k x x x
= =

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

∑ ∑… …  

An important addition to this definition is the requirement that for each of the 
hyperreal numbers 1 2, , , mx x x… , only one equivalence class representative may be 
used throughout the entire summation. That is, to calculate ( )1 2, , , , ms n x x x…  for 
a single hypernatural number n, we first choose equivalence class representatives 
for each of the 1 2, , , mx x x…  and use the same representatives each time that we 
evaluate ( )1 2* , , , , ma k x x x…  in the summation. Without this restriction, is it poss-
ible to find ill-defined summations when n is infinite by choosing different equi-
valence class representatives for each index k. 
 The sum of the infinite series 

 ( )1 2
1

* * , , , ,
n

m
k

a k x x x
=
∑ …  

is defined to be ( )1 2lim * , , , ,n ms n x x x→∞ …  where n approaches infinity through 
the hypernatural numbers. If this limit exists and is equal to any hyperreal num-
ber, including infinite numbers, then the series is said to be convergent. 
 We consider an example that is used later in this paper. Let ( ), , ,s n a b t  
represent the sequence of partial sums of the binomial series for ( )ta b+ . This can 
be written as the summation 

 ( )
1

, , , .
n

t k k

k

t
s n a b t a b

k
−

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  
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In order to use the binomial expansion in the case where a, b, and t are hyperreal 
numbers, we need the *-transform of s, which is given by 

 

( )
1

1

* , , , *

.
i

i

n
t k k

k

n i t k k
i i

k

t
s n a b t a b

k
t

a b
k

−

=

−

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
⎡ ⎛ ⎞ ⎤

= ⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎝ ⎠ ⎦

∑

∑  

In this summation, we must use fixed pre-chosen equivalence class representa-
tives for a, b, and t for every index k. 

1.5 Limits 
One final result of nonstandard analysis that is needed in this paper is the follow-
ing statement about the limit of a function at a point or at infinity. 

Proposition 1.16. Let L be a real number. 

(a) ( )lim x a f x L→ =  if and only if ( )* f x L for all ( ) { }x m a a∈ − . 

(b) ( )lim x f x L→∞ = if and only if ( )* f x L  for all positive infinite x. 

Proof. All parts are proven by contrapositive. 

(a) Suppose ( )* f z L/  for some z a . We want to show that there exists an 
0ε >  such that for any 0δ >  there exists an x such that x a δ− < , but 

( )f x L ε− ≥ . Since ( )* f z L/ , we have ( )* 0f z L− . If ( )* f z  is fi-
nite, choose ( )( )1

2st * f z Lε = − , and if ( )* f z  is infinite, choose ε to be 
any positive real number. Let nz  be an equivalence class representative 
of z. Since z a , we know that 

  { }| nZ n z a δ= ∈ − < ∈UN . 

 We also know that 

 ( ){ }| nF n f z L ε= ∈ − ≥ ∈UN . 

 Choose N Z F∈ ∩  and let Nx z= . Then x a δ− < , but ( )f x L ε− ≥ . 
Therefore ( )lim x a f x L→ ≠ . 
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  Now we assume ( )lim x a f x L→ ≠ . Then there exists an 0ε >  
such that for every 0δ >  we can find x such that x a δ− < , but 
( )f x L ε− ≥ . We construct a sequence nx  by choosing each nx  such 

that 1nx a n− <  and ( )nf x L ε− ≥ . Then we have [ ]nx a since for 
any positive real number r, nx a r− <  for all n N>  where N is the least 
natural number satisfying 1 N r< . But [ ]( )* nf x L/  because 
( )nf x L ε− ≥  for all n∈N. So we have found a number infinitely close 

to a for which the function value is not infinitely close to L. 
(b) Suppose ( )* f z L/  for some positive infinite number z. We want to 

show that there exists an 0ε >  such that for any m∈N there exists an 
x m>  such that ( )f x L ε− ≥ . As in part (a), ( )* 0f z L− . So if ( )* f z  
is finite, choose ( )( )1

2st * f z Lε = − , and if ( )* f z  is infinite, choose ε to 
be any positive real number. Let nz  be an equivalence class representa-
tive of z. Since z is infinite, we know that 

 { }| nZ n z m= ∈ > ∈UN . 

 We also know that 

 ( ){ }| nF n f z L ε= ∈ − ≥ ∈UN . 

 Choose N Z F∈ ∩  and let Nx z= . Then x m> , but ( )f x L ε− ≥ . There-
fore ( )lim x f x L→∞ ≠ . 

  Now we assume ( )lim x f x L→∞ ≠ . Then there exists an 0ε >  
such that for every N ∈N we can find x N>  such that ( )f x L ε− ≥ . We 
construct a sequence nx  by choosing each nx  such that nx n>  and 
( )nf x L ε− ≥ . Then [ ]nx  is infinite since for any positive real number 

r, nx r>  for all n r> . But [ ]( )* nf x L/  because ( )nf x L ε− ≥  for all 
n∈N . So we have found an infinite number for which the function value 
is not infinitely close to L. 
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2 Development of New Hyperreal Structures 

his section introduces the concept of superiority and the equivalence rela-
tion called local equality. Many structures which arise in the set of hyper-
real numbers due to these concepts are examined along with their 

relationships to existing structures. Succeeding sections discuss applications of 
the properties of these new structures. 
 The following notation is used in this and later sections. The set of all infinite 
numbers in *R  will be denoted by T, and the set of all infinitesimal numbers in 
*R  will be denoted by S. The symbols  and  will be used to mean “less than 
or infinitely close to” and “greater than or infinitely close to” respectively. The 
symbols  and  will be used to mean “less than but not infinitely close to” and 
“greater than but not infinitely close to” respectively. 

2.1 Orders of Numbers and the Superiority Relation 
The order of a number and all subsequently dependent relations are based upon 
the choice of a positive infinite number ω. We do not give an explicit equiva-
lence class representative for ω since all calculations that we perform which in-
volve ω do not actually rely on its value. Thus all of the relations and structures 
defined in this section have the same properties for every possible choice of ω. 
We need only remember that during any one calculation that ω represents a con-
stant positive infinite hyperreal number. This method allows us to perform com-
putations in the hyperreal numbers and at the same time abstract beyond the need 
to know anything about the ultrafilter used to construct the hyperreals or the se-
quences that represent equivalence classes. All symbolic manipulation is done 
with real numbers and functions of ω. We use the letter α to represent 1 ω  for 
any choice of ω. The arbitrary nature of ω and α allows us to show in a single 
calculation that certain properties hold for all positive infinite or infinitesimal 
numbers. 
 We first define an equivalence relation that partitions *R  into what are called 
zones. This is done by considering the logarithm base ω of each hyperreal num-
ber. We will use the symbol log to represent the function *log on *R  as well as 
the function log on R. 

T 
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Definition 2.1. The order of a number *a∈ R , written ( )ord a , is defined as 
( )ord loga aω= . The order of 0 is defined to be −∞ . 

The order of a number represents the size of the number on a scale which tran-
scends infinitesimal, finite, and infinite numbers. Although this order depends 
upon the choice of ω, we have the following property that does not depend on the 
value of ω, but only on the fact that ω is infinite. 

Lemma 2.2. All numbers in ( ) ( )0 0G m−  (i.e., all finite non-infinitesimals) 
have infinitesimal order. 

Proof. Let ( ) ( )0 0x G m∈ − . Since x is not infinitesimal or infinite, there ex-
ist positive real numbers a and b such that a x b< < . For every positive real 
number r, ( )ord ln lnr r ω= ∈S . Since the logarithm is a strictly increasing 
function, we have ( ) ( ) ( )ord ord orda x b< < . So x has infinitesimal order. 

 Clearly, every infinite number has positive order and every infinitesimal 
number has negative order. What is interesting is that although most infinite and 
infinitesimal numbers do not have infinitesimal order, there are elements of T 
and S that do, and these numbers are given the following special names. 

Definition 2.3. If t∈T  and ( )ord t ∈S , then t is called semi-infinite. The set 
of infinite numbers less the set of semi-infinite numbers is denoted by ′T . 

Definition 2.4. If s∈S and ( )ord s ∈S, then s is called semi-infinitesimal. 
The set of infinitesimal numbers less the set of semi-infinitesimal numbers is 
denoted by ′S . 

An example of a semi-infinite number is lnω  whose order is ln ln lnω ω . All 
semi-infinitesimal numbers are reciprocals of semi-infinite numbers and vice-
versa, so 1 lnω  is semi-infinitesimal. Properties of semi-infinite and semi-
infinitesimal numbers are identified throughout this section. 
 The order of each hyperreal number is used to define the following relation 
on *R . 

Definition 2.5. Given , *a b∈ R, we say a and b are isometric and write a b=  
if and only if ( ) ( )ord orda b . 

The relation = is an equivalence relation since S is a group under addition. The 
name “isometric” is used because two numbers whose orders differ only by an 
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infinitesimal are of the same general size when considered as members of the 
vast infinitesimal and infinite extent of the set of hyperreal numbers. 
 We now introduce the superiority relation that is used to relate two numbers 
which are not isometric. 

Definition 2.6. Let , *a b∈ R such that a b=/ . If ( ) ( )ord orda b , then we say 
a is inferior to b and write a b< , and if ( ) ( )ord orda b , then we say a is su-
perior to b and write a b> . 

The symbol ≤ is used to mean “inferior to or isometric to”, and the symbol ≥ is 
used to mean “superior to or isometric to”. Note that 0 a<  for all nonzero *a∈ R . 
Also note that if a b≤  then a b≤ . This property will be useful in several proofs 
later in this paper. 
 If two numbers a and b in *R  are related by =, <, or >, then multiplication of 
both by any nonzero *x∈ R preserves this relation. 

Lemma 2.7. Let , , *a b x∈ R. Then a b=  implies ax bx= , and if 0x ≠  then 
a b<  implies ax bx< . 

Proof. Suppose a b= . Then ( ) ( )ord orda b . Adding ( )ord x  to both sides, 
we have ( ) ( ) ( ) ( )ord ord ord orda x b x+ + . Therefore ( )ord ax  ( )ord bx , so 
ax bx= . 
 Now suppose a b< . Then ( ) ( )ord orda b , so by a similar argument 

( ) ( )ord ordax bx  and thus ax bx< . 

Addition of equals does not preserve the relations =, <, and >. Consider as an 
example that 21 1α α+ = + , but if we add 1−  to both sides then we would have 

2a a= , which is not true. 

2.2 Zones and Worlds 
An equivalence class created by the equivalence relation = is given the following 
name. 

Definition 2.8. The equivalence class induced by = containing *a∈ R  is 
called the zone about a. This is written ( ) { }zone * |a x x a= ∈ =R . We define 

( ) { }zone 0 0= . 

The zone about a is the set of all numbers whose order is in the monad about 
( )ord a . Thus it is possible to express the zone about a as 
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 ( ) ( )( ) ( )( )ord ordzone .m a m aa ω ω= ∪−  

Note that since ( ) ( )ord ordx x= −  for all *x∈ R, if ( )zonex a∈  then 
( )zonex a− ∈ . Also note that since ( )ord 1 0= , ( )zone 1  is the set of all elements 

of *R  having infinitesimal order. Therefore ( )zone 1  contains all of the nonzero 
real numbers. 

Theorem 2.9. ( )zone 1  is a multiplicative subgroup of *R . 

Proof. We need to prove closure and containment of inverses. Let 
( ), zone 1a b∈ . Then ( )ord a ∈S and ( )ord b ∈S . Therefore, ( )ord ab =  

( ) ( )ord orda b+ ∈S. So zone(1)ab∈  and thus ( )zone 1  is closed under mul-
tiplication. ( )zone 1  contains multiplicative inverses since for all *x∈ R, 

( ) ( )1ord ordx x− = −  and S contains additive inverses. 

 Every zone is a coset of ( )zone 1 . We therefore have the properties that for all 
*a∈ R , ( ) ( )zone zone 1a a=  and ( )zone a  is closed under multiplication by ele-

ments of ( )zone 1 . 
 All semi-infinite and semi-infinitesimal numbers are contained in ( )zone 1 . 
We can therefore express the set of semi-infinite numbers as ( )zone 1∩T , and we 
can express the set of semi-infinitesimal numbers as ( )zone 1∩S . 
 No zone (excluding ( )zone 0 ) is closed under addition since for any b a< , 

( )zonea b a+ ∈ , but ( )zonea b a a+ − ∉ . The smallest additive subgroup of *R  
containing ( )zone a  therefore contains every number which is inferior to a. This 
set is given the following name. 

Definition 2.10. The world about *a∈ R , denoted ( )W a , is defined by 
( ) { }* |W a x x a= ∈ ≤R . 

We use the notation ( )0W a  to represent the set { }* |x x a∈ <R . ( )0W a  can be 
thought of as the interior of the set of zones contained in ( )W a , and ( )zone a  can 
be thought of as the boundary of the set of zones contained in ( )W a . We thus 
have for the zone about a the alternate notation ( )W a∂ . 

Theorem 2.11. ( )W a  and ( )0W a  are groups under addition for all *a∈ R . 

Proof. ( )0 W a∈  and ( )00 W a∈  because 0 a≤  for all *a∈ R . Each zone 
which is contained in ( )W a  contains its own additive inverses. We are left 
with proving closure, which we first prove for the ( )W a  case. 
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 Let ( ),x y W a∈ . Without loss of generality, we can assume that x y≥ . 
We will show that ( ) ( )x y W x W a+ ∈ ⊆ . This means we must show that 

( ) ( )ord ordx y x+ . Let ( )max ,z x y= . Then 

 

( )
( )

( )

ord log
log
log 2
log 2 log
ord .

x y x y
x y
z

z
z

ω

ω

ω

ω ω

+ = +

≤ +

≤
= +

 (2.1) 

If x y=  then z x= . If x y>  then z x= . In both cases, ( ) ( )ord ordz x . 
Therefore, from the above equation, ( ) ( )ord ordx y x+ . 
 Closure of ( )0W a  is proven in the exact same manner since for 

( )0,x y W a∈  with x y≥ , ( ) ( )0W x W a⊂ . 

 An important observation is that if x y>  then x y x+ =  since otherwise, if 
x y z x+ = <  then x z y x= − < , a contradiction. This is the fundamental concept 
behind what we soon define to be local equality. 

Theorem 2.12. ( )W a  and ( )0W a  are rings if and only if 1a ≤ . 

Proof. Assume 1a ≤ . By Theorem 2.11, ( )W a  and ( )0W a  are additive sub-
groups of *R . We need only prove closure under multiplication. Let 

( ),x y W a∈ . Since 1a ≤  and both x a≤  and y a≤ , ( )ord 0x  and 
( )ord 0y . Therefore, ( ) ( ) ( )ord ord ord 0xy x y= + . So ( )xy W a∈  and 
( )W a  is thus closed under multiplication. For ( )0,x y W a∈ , we have the 

simpler situation that ( )ord 0x <  and ( )ord 0y < . Therefore, ( )ord 0xy <  and 
we have ( )0xy W a∈ . 
 Now suppose that 1a > . Then ( )ord 1a . So we have ( )2ord a = 

( ) ( )2ord orda a  and thus ( )2a W a∉ . Therefore ( )W a  is not closed under 
multiplication. Also, ( )0W a  is not closed since if we let b =  ( )0a W a∈ , 
then ( )2

0b W a∉ . 

 It turns out that for any two rings of the type mentioned in Theorem 2.12, the 
smaller subring is an ideal of the larger. 

Theorem 2.13. Let , *a b∈ R such that 1a b< ≤ . Then 

(a) ( ) ( )W a W b  
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(b) ( ) ( )0W a W b  

(c) ( ) ( )0W a W b  

(d) ( ) ( )0 0W a W b  

Proof. 

(a) Let ( )x W a∈  and ( )y W b∈ . Then ( )ord 0x  (since 1a < ) and 
( )ord 0y . So ( ) ( ) ( ) ( )ord ord ord ordxy x y x= + , which implies 

xy x≤ , and thus ( )xy W a∈ . 

(b) Identical to (a). 

(c) Similar to (a), except ( )ord 0y . So ( ) ( )ord ordxy x , which implies 
xy x< . 

(d) Identical to (c). 

Theorem 2.14. ( )0 1W  is a maximal ideal of ( )1W . 

Proof. Suppose there exists an ideal I of ( )1W  with ( ) ( )0 1 1W I W⊂ ⊂ . Then 
there exists x I∈  such that 1x =  and is therefore an element of ( )zone 1 . But 
by Theorem 2.9, ( )zone 1  contains multiplicative inverses, so x is a unit and 
thus ( )1I W= . So ( )0 1W  must be maximal. 

 We have now constructed a field ( ) ( )01 1W W  considerably smaller than *R  
that still contains an isomorphic copy of the real numbers through the map 

[ ] ( )0, , , 1r r r r W+…  and also contains infinite and infinitesimal numbers 
such as ( )0ln 1Wω +  and ( )01 ln 1Wω + . 

2.3 Local Equality 
The concept of local equality involves choosing a “level” to work on and equat-
ing any two numbers in *R  that differ by an insignificant amount with respect to 
this level. For example, on the finite level (i.e., the level of 1), any two numbers 
that differ by a sufficiently small infinitesimal are considered to be locally equal. 
The precise definition is as follows. 

Definition 2.15. Let , , *a b ∈ R with 0≠ . We say a is locally equal to b on 
the level of  and write a b=  if and only if a b− < . 
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 Local equality on the level of  is an equivalence relation since 0 <  for all 
*∈ R  and ( )0W  is closed under addition by Theorem 2.11. One immediate ob-

servation is that if x <  then 0x = . If a b= , then obviously a c b c+ = +  for 
any *c∈ R . Also, it follows immediately from Lemma 2.7 that if a b=  then 

cac bc= . 
 If two numbers are locally equal on the level of  then they are also locally 
equal on the level of any element of ( )zone . Replacing the level representative 
with an isometric number does not change anything. Local equality is also pre-
served if the level representative is replaced by a superior number. In general, if 
a b=  and m ≥ , then ma b= . 

Lemma 2.16. If aa b=  then a b= . 

Proof. If aa b=  then a b a− < . So we can write b a ε= +  where aε < . Since 
a aε+ = , we know b a= . 

 An immediate consequence of this lemma is that if aa b=  then ba b= . This 
also lets us make the statement that if aa b=  then 11 1aa b= . This is because if 
we divide both sides of aa b=  by a, we have 11 b a= . Then dividing both sides 
by b gives us 11 1bb a= . By the lemma, this is equivalent to 11 1aa b= . This 
property of local equality is useful in Section 4. 
 Here are some example local equalities. 

 

1 2

1

1

3 4
5 6 5

17 7
ln

ω

α α

α

ω

=

=

+ =

+ ≠  

Note that in the last example given above, even though 1 lnω  is an infinitesimal, 
it is too large to be ignored on the finite level. The reason is that 1 lnω  is a semi-
infinitesimal and semi-infinitesimals are not inferior to any finite number. 
 The equivalence classes of local equality on the level of 1 are analogous to 
monads. Numbers that are in ( )m a  but not in { }1|x x a=  are exactly those which 
differ from a by a semi-infinitesimal. So 1x y=  implies x y , but the converse is 
not necessarily true. 
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2.4 Summary 
All of the structures and relations introduced in this section depend upon a posi-
tive infinite number ω whose exact value is left undefined but is considered to be 
held constant throughout any statement, proof, calculation, etc. Whenever the 
number ω appears in an expression, it is assumed to be the same ω that any rela-
tions appearing in the expression such as inferiority and local equality depend on 
through the order function. 
 The arbitrary nature of ω allows us to conclude statements such as if 
( )f Lω  independently of the choice of ω, then ( )f t L for all positive infinite 

numbers t. This becomes an invaluable tool when used in conjunction with local 
equality for evaluating limits which assume an indeterminate form and also for 
testing infinite series for convergence. These topics are discussed in the next two 
sections. 
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3 Evaluation of Limits 

e now use the concept of local equality to develop a system for eva-
luating certain types of limits at points where they assume indetermi-
nate forms. The methods presented are alternatives to l’Hôpital’s 

Rule which are generally easier to use and in most cases allow much faster com-
putation. Several examples are given which demonstrate the new methods on 
limits which assume the indeterminate forms 0 0, ∞ ∞ , 1∞, and ∞ −∞ . 

3.1 Preliminary Theory 
Nonstandard analysis tells us that ( )lim x f x→∞  exists and is equal to L if 

( )* f x L  for all positive infinite *x∈ R (see Section 1.5). When evaluating lim-
its of this form, we will be able to show that ( ) 1* f Lω =  independently of the 
choice of ω. Thus, in a single calculation, we will be able to show that ( )* f x L 
for every infinite number ω. This implies that ( )lim x f x L→∞ = . 
 A similar method will be used for limits of the form ( )0lim x f x→ . In this 
case, we need to show that ( )* f x L  for all infinitesimal x. We will be able to 
obtain ( ) 1* f Lα =  independently of the choice of α, from which is follows that 

( )0lim x f x L→ = . 
 The way in which we will use local equality at first is by using the fact that 
given ( ) [ ]p x x∈R , if we choose a ′ ′∈ ∪S T , then every term of ( )p x  evaluated 
at a belongs to a different zone. Thus we have properties such as ( )p ω  is locally 
equal on its own level to the highest degree term of ( )p x  evaluated at ω. 
 The following lemma becomes useful in several places where we are work-
ing with infinite series of infinitesimals. (The * is omitted from the summations 
in this section – all summations are nonstandard.) 

Lemma 3.1. If β is an infinitesimal, then 
1

n
n
β β∞

=
=∑ . 

Proof. We have the equation 

W
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1 1

1

1

1

1

1
2

2
.

n n

n n

n

n

n

n

β β

β β

β

β
β

∞ ∞

= =

∞
−

=

−∞

=

≤

=

⎛ ⎞< ⎜ ⎟
⎝ ⎠

=
=

∑ ∑

∑

∑

 (3.1) 

This tells us that 
1

n
n
β β∞

=
≤∑ . Since β itself is a summand, 

1
n

n
β β∞

=
=∑ . 

 In many of the examples in this section, we use power series to represent ex-
ponential and trigonometric functions. These series are then evaluated at α, mak-
ing it possible to use the following lemma. 

Lemma 3.2. Suppose 1β <  and let |na n∈N  be a sequence of real numbers 
such that na  is bounded by some real number m. Then for any finite k, 

1 1
* *

k kn n
n nn n

a aββ β∞

= =
=∑ ∑ . 

Proof. We need to show that 
1
* n k

nn k
a β β∞

= +
<∑ . We can write this sum as 

 

1 1

1

1

1

* *

*

*

.

n n
n n

n k n k

k n k
n

n k

k n
n k

n

k n

n

a a

a

a

m

β β

β β

β β

β β

∞ ∞

= + = +

∞
−

= +

∞

+
=

∞

=

≤

=

=

≤

∑ ∑

∑

∑

∑  (3.2) 

By Lemma 3.1, 
1

n
n

β β∞

=
=∑ . Therefore, 

 1

1
.k n k

n
m β β β

∞
+

=

=∑  (3.3) 

This tells us that 
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 1

1
* .n k

n
n k

a β β
∞

+

= +

≤∑  (3.4) 

Since 1β < , 1k kβ β+ < , so the entire sum is inferior to kβ . 

This lemma allows us to make statements such as 
3 3sin 6αα α α= − . 

3.2 Limits of the Form 0 0 and ∞ ∞ 

For limits which assume the form 0 0 or ∞ ∞ , we need to examine the properties 
of local equality as it pertains to quotients a b. If a b< , then 1 0a b = , and if 
a b> , then a b is infinite. For the remaining case, a b= , we have the following 
theorem. 

Theorem 3.3. Let 1a , 2a , 1b , and 2b  be nonzero elements of *R . Suppose we 
have the local equalities 1

1 2
aa a=  and 1

1 2
bb b= . Then 1 21 1

1 2

a aa b
b b= . 

Proof. Write 2 1 aa a ε= +  where 1a aε <  and write 2 1 bb b ε= +  where 1b bε < . 
Multiplying aε  by 1b  and bε  by 1a , we have the relations 1 1 1ab a bε <  and 

1 1 1ba a bε < . Since ( )0 1 1W a b  is closed under addition, 1 1 1 1b aa b a bε ε− < . By 
Lemma 2.16, 1 2b b= . So we can write 

 1 1 1 2 .b aa b a bε ε− <  (3.5) 

The left side of this equation can be rewritten by adding and subtracting 1 1a b  
to obtain 

 ( ) ( )1 1 1 1 1 2 .b aa b b a a bε ε+ − + <  (3.6) 

Replacing 1 bb ε+  with 2b  and 1 aa ε+  with 2a  and then dividing both sides by 
1 2b b  (using Lemma 2.7), we have 

 1 2 2 1 1

1 2 1

.a b a b a
b b b
−

<  (3.7) 

The left side of this equation is simply 1 2

1 2

a a
b b− , so the proof is complete since 

this is now the definition of 1 21 1

1 2

a aa b
b b= . 

 A trivial example of the application of Theorem 3.3 is a quotient of polyno-
mials. If we have ( ) ( )lim x p x q x→∞ , then we substitute ω for x in both ( )p x  and 
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( )q x . If ( ) ( )p qω ω= , which is true if and only if p and q have the same degree, 
then the limit is equal to the quotient of the leading coefficients of p and q. Fol-
lowing are two slightly less trivial examples in which trigonometric functions 
appear. 

Example 3.4. 2

sinlim
x

x
x x→∞ +

 

Solution. We replace the sine function with its power series and evaluate at 
α to obtain 

 
3 5

3! 5!
2 .

α αα
α α

− + − +
+

 

By Lemma 3.2, 3 5

3! 5!
αα αα α− + − + =  and 2 αα α α+ = , so we can apply 

Theorem 3.3 as follows. 

 
3 5

13! 5!
2 1.

α αα α
α α α

− + − +
= =

+
 

Since this local equality holds for any choice of α, we know 2
sin

0lim 1x
x x x→ +

= . 

A similar example involving the cosine function is given next. 

Example 3.5. 2 40

1 coslim
3x

x
x x→

−
−

 

Solution. As above, we replace the cosine function with its power series and 
evaluate at α to obtain 

 
( )2 4 2 4

2! 4! 2! 4!
2 4 2 4

1 1
.

3 3

α α α α

α α α α
− − + − + − + −

=
− −

 

This time we have 
22 4 21

2! 4! 2
αα α α− + − =  and 

22 4 23 αα α α− = , so applying 
Theorem 3.3, 

 
2 4 21

12! 4! 2
2 4 2

1 .
3 2

α α α
α α α
− + −

= =
−

 

Again, this local equality is independent of α. So 2 4
1 cos 1

0 23
lim x

x x x
−

→ −
= . 
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 Evaluating the limit in Example 3.5 would require two applications of 
l’Hôpital’s rule. However, using local equality enables the limit to be evaluated 
in a single step once the trigonometric function is replaced by its power series. 

3.3 Limits of the Form 1∞ 
Far more interesting situations arise when we examine limits which assume the 
form 1∞. For this case, we need the following theorem. 

Theorem 3.6. Let *a∈ R  and suppose 1 1a t− =  for some positive infinite 
number *t∈ R. Then for any *b∈ R satisfying 1 tb a= , we have 

tt a ta b= . 

Proof. Let b aε = −  and assume 0ε ≠ . Expanding ( )ta ε+  with the binomial 
theorem, we obtain 

 ( )
0

.tt t k k

k

t
b a a

k
ε ε

∞
−

=

⎛ ⎞
= + = ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (3.8) 

For 0k = , the summand is simply ta . We wish to show that the sum of the 
terms for 1k ≥  is inferior to ta . So we rewrite equation (3.8) as 

 
1

t t t k k

k

t
b a a

k
ε

∞
−

=

⎛ ⎞
= + ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (3.9) 

and show that this sum for 1k ≥  satisfies the hypothesis of Lemma 3.1. (We 
will actually be applying this lemma twice.) 
 The binomial coefficient ( ) ( )( ) ( )1 2 1 !t

k
t t t t k k= − − − +  is a degree k 

polynomial in t. When the numerator is expressed as a sum of powers of t, 
the coefficient of the degree j term is given by the Stirling number of the first 
kind ( ),s k j  where ( ), 0s k j =  if 1j <  or j k> . Thus we can write equation 
(3.9) as 

 ( )
1 1

, .
!

k
t t t k k j

k j

s k jb a a t
k

ε
∞

−

= =

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∑ ∑  (3.10) 

Since 1 tε < , we can write tε β=  where 1β < .   Replacing ε with tβ  and 
factoring kt  out of the inner sum, we have 
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 ( )
1 1

, .
!

k
t t t k k j k

k j

s k jb a a t
k

β
∞

− −

= =

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∑ ∑  (3.11) 

We now reverse the order of summation for the inner sum through the map 
1j k j+ −  so that the terms are arranged in the order necessary for the ap-

plication of Lemma 3.1. This gives us 

 ( ) 1

1 1

, 1 .
!

k
t t t k k j

k j

s k k jb a a t
k

β
∞

− −

= =

⎛ + − ⎞
= + ⎜ ⎟

⎝ ⎠
∑ ∑  (3.12) 

For convenience, we define 

 ( ) 1

1

, 1 .
!

k
j

k
j

s k k ju t
k

−

=

+ −
=∑  (3.13) 

When k is finite, 1ku =  since it is a finite sum of elements of ( )1W . The Stirl-
ing numbers of the first kind obey the recurrence relation 

 ( ) ( ) ( ) ( ), 1, 1 1 1, .s k j s k j k s k j= − − − − −  

Starting with ( )1,1 1s = , an easy induction argument shows that ( ), !s k j k≤  
for all k and j. So when k is infinite, we have 

 

( ) 1

1

1

1

1

1

, 1
!

1

1 .

k
j

k
j

k
j

j

jk

j

j

j

s k k ju t
k

t

t
t

t
t

−

=

−

=

=

∞

=

+ −
=

≤

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞< ⎜ ⎟
⎝ ⎠

∑

∑

∑

∑  (3.14) 

Lemma 3.1 applies to the last sum of this equation giving us 
1

1j
j

t t∞ −
=

=∑ . 
Therefore, 

1
1j

j
t t∞ −

=
=∑ . Since this expression is greater than ku , we must 

have 1ku ≤ . Substituting ku  into equation (3.12) and factoring ta  out of the 
summation, we have 
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1

1 .
k

t t
kk

k

b a u
a
β∞

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑  (3.15) 

Since 1ku ≤  for all k, we know 

 

1 1

1
.

k k

k kk k
k k

k

k
k

u u
a a

a

β β

β

∞ ∞

= =

∞

=

≤

≤

∑ ∑

∑  (3.16) 

Since 1β <  and 1a = , we have 1aβ < . So Lemma 3.1 applies to this sum 
and we obtain 

1
k k

k
a aβ β∞

=
=∑ . Thus, ( )1

1k k
kk

a u aβ β∞

=
≤ <∑ . Calling 

this sum ξ, we now have ( )1t t t tb a a aξ ξ= + = +  where t ta aξ < . So 
tt a ta b=  

and the theorem is proven. 

 The simplest application of Theorem 3.6 is to the evaluation of 
( )lim 1 x

x c x→∞ + . When we substitute ω for x, we have ( )1 c ωα+ . Since 
2 21 2!ce c cα α α= + + + − , we have 1 cc eα αα+ = . Therefore, by Theorem 3.6 

and since c ce eαω = , we have ( )1
ce cc eωα+ = , which is equivalent to 

( ) 11 cc eωα+ = . This happens independently of our choice of ω, so 
( )lim 1 x c

x c x e→∞ + = . 
 Theorem 3.6 tells us much more than this. In fact, it is now easy to show that 
for any ( )f x  satisfying ( )* f ω α< , the limit ( )( )lim 1 x

x c x f x→∞ + +  does not 
differ from ( )lim 1 x

x c x→∞ + . 
 We can also use Theorem 3.6 to more easily evaluate limits of this form 
where c is a function of x instead of a constant. This is demonstrated in the first 
example below. 

Example 3.7. ( )ln1
lim

1

xx
x

x x→∞

+
+

 

Solution. We first evaluate at ω to obtain the expression 

 ( )1 ln .
1

ωα ω
ω

+
+

 

Since ( )ln zone 1ω∈ , local equality on the level of α is equivalent to local 
equality on the level of lnα ω . So ln1 ln eα α ω αα ω ω+ = = , from which Theo-
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rem 3.6 tells us that ( )1 ln ω ωα ω ω+ = . We also have for the denominator 
1 ωω ω+ = , so by Theorem 3.3, 

 ( ) 11 ln 1.
1

ωα ω
ω

+
=

+
 

Therefore, the value of the limit is 1. 

Example 3.8. 

1

0
lim

2

x x x

x

a b
→

+⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Solution. Evaluating at α, we have 

 .
2

a b ωα α+⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Using the identity ln cc eα α= , this can be rewritten as 

 
ln ln

.
2

a be e ωα α+⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Adding the power series for the exponentials together, we obtain 

 ( ) ( ) ( )( )2 221 11 ln ln ln ln .
2 4

a b a b
ω

α α⎛ ⎞+ + + + +⎜ ⎟
⎝ ⎠

 

Even though the above expression is not the power series for 
( )ln ln 2a be ab+ = , it is locally equal to this power series on the level of α. So 

we can apply Theorem 3.6 to obtain 

 ( ) ( ) ( )( )2 221 11 ln ln ln ln .
2 4

aba b a b ab
ω

α α⎛ ⎞+ + + + + =⎜ ⎟
⎝ ⎠

 

Therefore, the value of the limit is ab . 

Example 3.9. ( )
2cot

0
lim cos x

x
x

→
 

Solution. Evaluating at α and substituting power series, we have 
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 ( )

22

32

1 2!
2 3!cotcos 1 .

2!

α
α αα αα

⎛ ⎞− +−
⎜ ⎟

− +−⎝ ⎠⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

 

For the exponent we can use Theorem 3.3 to obtain 
2

3
1 2! 1

3!
α

α α
ω− +−

− +−
=  since 

1cos 1α =  and 1sinα α= . So we write 2 2cott α ω β= = +  where β ω< . Now 
for the base we have 2cos 1 1 tα α− = = . All of this shows that ( )

2cotcos αα  sa-
tisfies the conditions for Theorem 3.6. Since 

2 22 cose α α α− =  and cos 1α = , 
Theorem 3.6 tells us that 

 

( ) ( )
( )

22 2

2
2

2

cotcot 1 2

2

1 2 2

cos

.

e

e

e e

αα α

ω βα

α β

α −

+−

− −

=

=

=  

Since β ω< , 2 2α β−  is an infinitesimal which we will call γ. We now have 

 

21 2 2 1 2

1 2

1
1 .

!

n

n

e e e e

e
n

α β γ

γ

− − −

∞
−

=

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑  

Using Lemma 3.1, 

 

1 1

1

! !

.

n n

n n

n

n

n n
γ γ

γ

γ

∞ ∞

= =

∞

=

≤

<

=

∑ ∑

∑
 

So we finally have 

 1 2 1 1 2

1
1 .

!

n

n
e e

n
γ∞

− −

=

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

∑  

Therefore, the value of the limit is 1 2e− . 
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 These examples would require a great deal more work if we were to use 
l’Hôpital’s rule to evaluate the limits. However, to one who is adept at using 
Theorems 3.3 and 3.6, these limits can be evaluated with far less effort. 

3.4 Uncompensated Square Completion 
Another interesting situation arises for some limits which assume the form 
∞ −∞ . The example following the next theorem shows that we may sometimes 
add a number to an expression in order to complete a square without ever sub-
tracting the number elsewhere—that is, we never have to compensate for the 
change to the expression. 

Theorem 3.10. Let t be a positive infinite number and let c t< . Then 
1t c t+ = . 

Proof. Expanding t c+  with the binomial theorem we have 

 

1 2

0

1

1 2

1 2
.

k k

k

k

k
k

t c t c
k

ct t
tk

∞
−

=

∞

=

⎛ ⎞
+ = ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= + ⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑  (3.17) 

Since ( )1 2 1
k

<  for all k, we can write 

 
1 1

1 2
.

k k

k k
k k

c c
t tk

∞ ∞

= =

⎛ ⎞
≤⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  (3.18) 

Since c t< , c t is an infinitesimal. So Lemma 3.1 applies to this sum giving 
us ( )1

k k
k

c t c t∞

=
=∑ . We now have 

 
1

1 2
.

k

k
k

c ct
t tk

∞

=

⎛ ⎞
≤⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (3.19) 

Since c t< , 1c t < . Therefore, from equation (3.17), t c t ξ+ = +  
where 1ξ < . So 1t c t+ = . 

Example 3.11. 2lim 6
x

x x x
→∞

+ −  
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Solution. Evaluating at ω, we have 2 6ω ω ω+ − . Theorem 3.10 tells us that 
for any 2 6c ω ω< + , we must have 2 1 26 6cω ω ω ω+ + = + . So we 
choose the only value of c that is of any advantage—the one which com-
pletes the square under the radical. Setting 9c = , we have 

 
( )

2 1 2

2

6 6 9

3
3.

ω ω ω ω ω ω

ω ω

+ − = + + −

= + −

=  

Therefore, the value of the limit is 3. 

This method of uncompensated square completion provides a much faster alter-
native to the standard method of multiplying the expression by its conjugate. 
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4 Infinite Series 

n this section we present two new tests for the convergence of infinite series 
which are analogs of the comparison test and the limit comparison test of 
standard analysis. Once these tests have been introduced, we examine some 

useful facts which allow easier application of the tests and present some exam-
ples. 

4.1 Convergence Tests 
Both of the new tests determine the convergence of a series ( )1n

f n∞

=∑  by ex-
amining the properties of ( )* f ω . The first test checks to see whether 

( ) ( )* *g fω ω<  for some convergent series ( )1n
f n∞

=∑ . 

Theorem 4.1 (Order Comparison Test). Let ( )f x  and ( )g x  be standard 
positive-valued functions. If the series ( )1n

f n∞

=∑  converges and 
( ) ( )* *g fω ω<  (independent on the choice of ω) then the series ( )1n

g n∞

=∑  
also converges. 

Proof. Since ( ) ( )* *g fω ω< , we know that ( ) ( )* * 1g fω ω <  and thus 
( ) ( )* *g fω ω  is an infinitesimal. Since this happens independently of the 

choice of ω, this implies that ( ) ( )lim 0x g x f x→∞ = . Therefore, given any 
0ε > , there exists an N ∈N such that for all n N> , ( ) ( )g n f n ε< . Thus for 

all n N> , ( ) ( )g n f nε< . Since ( )1n
f nε∞

=∑  converges, ( )1n
g n∞

=∑  also con-
verges by the comparison test. 

Note that the contrapositive of this theorem states that if the series ( )1n
g n∞

=∑  
diverges and ( ) ( )* *g fω ω< , then the series ( )1n

f n∞

=∑  also diverges. 
 Let ( )( )ord *z g ω=  for some standard positive-valued function g. It imme-
diately follows from the order comparison test that if 1z −  then the series 

( )1n
g n∞

=∑  converges since in this case we would have ( )* 1 pg ω ω<  for some 
real number p with 1 p z< < − . If 1z − , then the series ( )1n

g n∞

=∑  diverges since 
in this case we would have ( )* 1 pg ω ω>  for some real p with 1z p− < < . 
 For the remaining case, 1z , we cannot conclude anything from the order 
comparison test. This means that if ( ) ( )* *f gω ω= , then whether ( )1n

f n∞

=∑  

I 
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converges tells us nothing about whether ( )1n
g n∞

=∑  converges. However, if 
( ) ( ) ( )** *ff gωω ω=  then we can infer the convergence of one series from the 

other. For this situation, we have the following test. 

Theorem 4.2 (Local Equality Test). If f and g are standard positive-valued 
functions that satisfy ( ) ( ) ( )** *ff gωω ω=  (independent on the choice of ω), 
then the series ( )1n

f n∞

=∑  and ( )1n
g n∞

=∑  either both converge or both di-
verge. 

Proof. Since ( ) ( ) ( )** *ff gωω ω= , we know that ( ) ( ) 1* * 1g fω ω = , which 
implies that ( ) ( )* * 1g fω ω . Since this property is independent of the 
choice of ω, this means that ( ) ( )lim 1x g x f x→∞ = . Therefore, by the limit 
comparison test, the series ( )1n

f n∞

=∑  and ( )1n
g n∞

=∑  either both converge or 
both diverge. 

4.2 Using the New Tests 
It is usually more convenient to think of an infinite series as a sum of the reci-
procals of a function evaluated at each natural number. Fortunately, the order 
comparison test and local equality test work equally well for this situation. This 
is because ( ) ( )* *f gω ω>  implies ( ) ( )1 * 1 *f gω ω<  and ( ) ( ) ( )** *ff gωω ω=  
implies ( ) ( ) ( )1 *1 * 1 *ff gωω ω= . 
 In many cases when the order comparison test cannot be used, it will be poss-
ible through local equality to reduce the number ( )* f ω  to a number of the form 
1 aω  where ( )zone 1a∈ . When this happens, the following extension to the 
p-series test is useful. We use the notation ( )ln n  to mean the natural logarithm tak-
en n times (e.g., ( )3ln ln ln lnx x= ). 
 Let k∈N and let m be the least natural number for which ( )ln k m  is real and 
greater than 1. Then the series 

 
( ) ( )( )2

1
ln ln ln pk

n m n n n n

∞

=
∑  

converges if and only if 1p > . We show this by using the integral test. The 
integral 
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( ) ( )( )2

1
ln ln ln pkm

dx
x x x x

∞

∫  

can be evaluated by making the substitution ( )ln ku x=  for which we have 
( ) ( )2 11 ln ln ln kdu x x x x−= . This gives us the integral 

 ( )ln
,

k pm

du
u

∞

∫  

which converges if and only if 1p > . 
 We conclude this section with a few examples. 

Example 4.3. 
2

3 2
1

3 2
4 6 1n

n n
n n

∞

=

− +
+ −∑  

Solution. Let ( ) 3 2

2
4 6 1

3 2
n n
n n

f n + −
− +

= . We substitute ω for n and notice 

 
3 2

2

4 6 1 .
3 2

ω ω ω
ω ω

+ −
=

− +
 

So if we can find a function ( )g n  such that ( ) 3 2

2
4 6 1

3 2
1 *g ω ω ω

ω ω
ω + −

− +
=  for which 

we know whether ( )1
1

n
g n∞

=∑  converges, then we can use the local equality 
test to determine whether ( )1

1
n

f n∞

=∑  converges. By Theorem 3.3, 

 
3 2

2

4 6 1 4
3 2

ωω ω ω
ω ω

+ −
=

− +
 

since 
33 2 34 6 1 4ωω ω ω+ − =  and 

22 23 2 ωω ω ω− + = . Because 
1
1 4

n
n∞

=∑  di-
verges, the local equality test tells us that the series that we are testing also 
diverges. 

 The next example demonstrates the procedure for dealing with factorials. As 
shown, the Stirling approximation for the factorial gives a good representation of 
the size of !ω . 

Example 4.4. 
5

1 !n

n
n

∞

=
∑  

Solution. From Stirling's approximation to !n , we know that 
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 2lim 1.
!

n n

n

n n e
n

π −

→∞
=  

Therefore ! 2 eω ωω πωω − . Using this, we can write 

 ( )

1
2

9 1
2 ln

5 5

1

!
1 .

e

ω

ω ω

ω α

ω ω
ω ω

ω

+ −

− −

=

=  

Since ( )9 1
2 ln1 zone 1ωα− − ∈ , the exponent of ω in this last expression is still 

an infinite number, so ( )9 1
2 ln1 2ωω αω ω− − > . Therefore, by the order comparison 

test, the series converges. 

 The above example may seem like a lot of work for such a simple summand. 
The intent was to demonstrate that ! pω ω>  for any finite number p. This fact will 
usually be enough to tell quickly whether a series containing factorials con-
verges. 
 We finish with a short example. 

Example 4.5. 
( )2

1

1
ln lnn n n n

∞

= −
∑  

Solution. The local equality test tells us that this series converges if and only 
if the series ( )2

1
1 ln

n
n n∞

=∑  converges, which it does by the earlier remark 
pertaining to the extended p-series test. 
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List of Notation 

n nx y≡  n nx y=  almost everywhere 
[ ]na  { }|n n nx x a≡  
*A *-transform of A; [ ]{ }| almost everywheren na a A∈  
*N  Hypernatural numbers 
*Z Hyperintegers 
*Q Hyperrational numbers 
*R  Hyperreal numbers 
T Set of all infinite numbers 
S Set of all infinitesimals 
A∞ Set of infinite numbers in A; A∩T 
x y  x is infinitely close to y; x y− ∈S 
x y  x y<  or x y  
x y  x y>  or x y  
x y  x y<  and x y/  
x y  x y>  and x y/  
( )m a  Monad about a; { }|x x a  
( )G a  Galaxy about a; { }| is finitex x a−  
( )ord a  Order of a; log aω  

′T  ( ){ }| ordx x∈ ∉T S  
′S  ( ){ }| ordx x∈ ∉S S  

x y=  x is isometric to y; ( ) ( )ord ordx y  
x y<  x is inferior to y; ( ) ( )ord ordx y  
x y>  x is superior to y; ( ) ( )ord ordx y  
x y≤  x y<  or x y=  
x y≥  x y>  or x y=  

( )zone a  Zone about a; { }|x x a=  
( )W a  World about a; { }|x x a≤  
( )0W a  { }|x x a<  

x y=  x is locally equal to y on the level of ; x y− <  
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