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Common math in computer graphics

● Dot / cross products, scalar triple product

● Planes as 4D vectors

● Homogeneous coordinates

● Plücker coordinates for 3D lines

● Transforming normal vectors and planes with 
the inverse transpose of a matrix
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Common math in computer graphics

● These concepts often used without a complete 
understanding of the big picture

● Can be used in a way that is not natural

● Different pieces used separately without
knowledge of the connection among them
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There is a bigger picture

● All of these arise as part of a single 
mathematical system discovered by
Hermann Grassmann.

● Understanding the big picture provides deep 
insights into seemingly unusual properties

● Knowledge of the relationships among these 
concepts makes better 3D programmers
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History

Hamilton
1843

Grassmann
1844

Clifford
1878

Quaternions Exterior
algebra

Clifford
algebra
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History
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Outline

● Grassmann algebra in 3-4 dimensions

● Wedge product, bivectors, trivectors...

● Transformations

● Homogeneous model

● Geometric computation

● Programming considerations
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The wedge product

● Also known as:
● The progressive product
● The exterior product

● Gets name from symbol:

● Read “a wedge b”

∧a b
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The wedge product

● Operates on scalars, vectors, and more
● Ordinary multiplication for scalars s and t:

● The square of a vector v is always zero:

0∧ =v v

s s s∧ = ∧ =v v v
s t t s st∧ = ∧ =
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Wedge product anticommutativity

● Zero square implies vectors anticommute

( ) ( ) 0
0
0

+ ∧ + =
∧ + ∧ + ∧ + ∧ =

∧ + ∧ =
∧ = − ∧

a b a b
a a a b b a b b

a b b a
a b b a
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Bivectors

● Wedge product between two vectors
produces a “bivector”

● A new mathematical entity
● Distinct from a scalar or vector
● Represents an oriented 2D area

● A vector represents an oriented 1D direction
● Scalars are zero-dimensional values
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Bivectors

● Bivector is two directions and magnitude
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Bivectors

● Order of multiplication matters

∧ = − ∧a b b a
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Bivectors in 3D

● Start with 3 orthonormal basis vectors:

● Then a 3D vector a can be expressed as

1 2 3, ,e e e

1 1 2 2 3 3a a a+ +e e e
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Bivectors in 3D

( ) ( )1 1 2 2 3 3 1 1 2 2 3 3a a a b b b∧ = + + ∧ + +a b e e e e e e

( ) ( ) ( )
( ) ( ) ( )

1 2 1 2 1 3 1 3 2 1 2 1

2 3 2 3 3 1 3 1 3 2 3 2

a b a b a b
a b a b a b

∧ = ∧ + ∧ + ∧
+ ∧ + ∧ + ∧

a b e e e e e e
e e e e e e

( )( ) ( )( )
( )( )

2 3 3 2 2 3 3 1 1 3 3 1

1 2 2 1 1 2

a b a b a b a b
a b a b

∧ = − ∧ + − ∧
+ − ∧

a b e e e e
e e
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Bivectors in 3D

● The result of the wedge product has three 
components on the basis

● Written in order of which basis vector is 
missing from the basis bivector

2 3 3 1 1 2, ,∧ ∧ ∧e e e e e e
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● Do the components look familiar?

● These are identical to the components 
produced by the cross product a × b

Bivectors in 3D

( )( ) ( )( )
( )( )

2 3 3 2 2 3 3 1 1 3 3 1

1 2 2 1 1 2

a b a b a b a b
a b a b

∧ = − ∧ + − ∧
+ − ∧

a b e e e e
e e
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Shorthand notation

12 1 2

23 2 3

31 3 1

123 1 2 3

= ∧
= ∧
= ∧
= ∧ ∧

e e e
e e e
e e e

e e e e
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Bivectors in 3D

( ) ( )
( )

2 3 3 2 23 3 1 1 3 31

1 2 2 1 12

a b a b a b a b
a b a b

∧ = − + −
+ −

a b e e
e
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Comparison with cross product

● The cross product is not associative:

● The cross product is only defined in 3D

● The wedge product is associative,
and it’s defined in all dimensions

( ) ( )× × ≠ × ×a b c a b c
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Trivectors

● Wedge product among three vectors
produces a “trivector”

● Another new mathematical entity

● Distinct from scalars, vectors, and bivectors

● Represents a 3D oriented volume



Berlin Colloquium for Scientific Visualization 2012 June 25, 2012
Berlin, Germany

Trivectors

∧ ∧a b c
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Trivectors in 3D

● A 3D trivector has one component:

● The magnitude is

( )
( )

1 2 3 2 3 1 3 1 2 1 3 2 2 1 3 3 2 1

1 2 3

a b c a b c a b c a b c a b c a b c
∧ ∧ =

+ + − − − ⋅
∧ ∧

a b c

e e e

[ ]( )det a b c



Berlin Colloquium for Scientific Visualization 2012 June 25, 2012
Berlin, Germany

Trivectors in 3D

● 3D trivector also called
pseudoscalar or antiscalar

● Only one component, so looks like a scalar

● But flips sign under reflection
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Scalar Triple Product

● The product

produces the same magnitude as

but also extends to higher dimensions

( )× ⋅a b c

∧ ∧a b c
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Grading

● The grade of an entity is the number of 
vectors wedged together to make it

● Scalars have grade 0
● Vectors have grade 1
● Bivectors have grade 2
● Trivectors have grade 3
● Etc.
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3D multivector algebra

● 1 scalar element
● 3 vector elements
● 3 bivector elements
● 1 trivector element
● No higher-grade elements
● Total of 8 multivector basis elements
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Multivectors in general dimension

● In n dimensions, the number of basis
k-vector elements is

● This produces a nice symmetry
● Total number of basis elements always 2n

n
k
 
 
 
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Multivectors in general dimension

Dimension Graded elements

1 1  1
2 1  2  1
3 1  3  3  1
4 1  4  6  4  1
5 1  5  10  10  5  1
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Four dimensions

● Four basis vectors

● Number of basis bivectors is

● There are 4 basis trivectors

1 2 3 4, , ,e e e e

4
6

2
  = 
 
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Vector / bivector confusion

● In 3D, vectors have three components
● In 3D, bivectors have three components

● Thus, vectors and bivectors look like the
same thing!

● This is a big reason why knowledge of the 
difference is not widespread
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Cross product peculiarities

● Physicists noticed a long time ago that
the cross product produces a different
kind of vector

● They call it an “axial vector”, “pseudovector”, 
“covector”, or “covariant vector”

● It transforms differently than ordinary
“polar vectors” or “contravariant vectors”
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Cross product transform

● Simplest example is a reflection:

1 0 0
0 1 0
0 0 1

− 
 =   
 

M
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Cross product transform

● Not the same as

( ) ( ) ( )1,0,0 0,1,0 0,0,1× =

( ) ( )
( ) ( ) ( )

1,0,0 0,1,0
1,0,0 0,1,0 0,0, 1

×
= − × = −
M M

( ) ( )0,0,1 0,0,1=M
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Cross product transform
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Cross product transform

● In general, for 3 x 3 matrix M,

( )1 1 2 2 3 3 1 1 2 2 3 3a a a a a a+ + = + +M e e e M M M

( ) ( )1 1 2 2 3 3 1 1 2 2 3 3a a a b b b
× =

+ + × + +
Ma Mb

M M M M M M
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Cross product transform

( )( )
( )( )
( )( )

2 3 3 2 2 3

3 1 1 3 3 1

1 2 2 1 1 2

a b a b
a b a b
a b a b

× =
− ×

+ − ×
+ − ×

Ma Mb
M M
M M
M M
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Products of matrix columns

● What are these cross products?

● They are complements of the columns of M

( )
( )
( )

2 3 1

3 1 2

1 2 3

det
det
det

× ⋅ =
× ⋅ =
× ⋅ =

M M M M
M M M M
M M M M
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Matrix inversion

● Cross products as rows of matrix:

● This forms inverse of M times det M

2 3

3 1

1 2

det 0 0
0 det 0
0 0 det

×   
   × =
   
   ×   

M M M
M M M M
M M M
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Cross product transform

● Transforming the cross product requires the 
inverse matrix:

( )
2 3

1
3 1

1 2

det −

× 
 × =
 
 × 

M M
M M M M
M M
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Cross product transform

● Inverse transpose correctly transforms
result of cross product:

( )

( )( ) ( )( )
( )( )

2 3 3 2

3 1 1 3

1 2 2 1

2 3 3 2 2 3 3 1 1 3 3 1

1 2 2 1 1 2

det T

a b a b
a b a b
a b a b

a b a b a b a b
a b a b

−

− 
 − =
 
 − 

− × + − ×
+ − ×

M M

M M M M
M M
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Cross product transform

● Transformation formula:

● Result of cross product must be transformed 
by inverse transpose times determinant

( ) ( )det T−× = ×Ma Mb M M a b



Berlin Colloquium for Scientific Visualization 2012 June 25, 2012
Berlin, Germany

Cross product transform

● If M is orthogonal, then inverse transpose is 
the same as M

● If the determinant is positive, then it can be 
left out if you don’t care about length

● Determinant times inverse transpose is called 
adjugate transpose
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Cross product transform

● What’s really going on here?

● When we take a cross product,
we are really creating a bivector

● Bivectors are not vectors, and they
don’t behave like vectors
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Normal “vectors”

● A triangle normal is created by taking
the cross product between two tangent vectors

● A normal is really a bivector, and it
transforms as such
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Normal “vector” transformation
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Classical derivation

● Standard proof for inverse 
transpose for transforming 
normals:

● Preserve zero dot product 
with tangent

● Misses extra factor of
det M

1

0
0

0T T

T

T

−

−

⋅ =
⋅ =

=

=

=

N T
UN MT
N U MT
U M
U M



Berlin Colloquium for Scientific Visualization 2012 June 25, 2012
Berlin, Germany

Higher dimensions

● In n dimensions, the (n − 1)-vectors
have n components, just as 1-vectors do

● Each 1-vector basis element uses exactly one 
of the spatial directions e1...en

● Each (n − 1)-vector basis element uses all 
except one of the spatial directions e1...en
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Symmetry in three dimensions

● Vector basis and bivector (n − 1) basis

1

2

3

e
e
e

2 3

3 1

1 2

∧
∧
∧

e e
e e
e e
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Symmetry in four dimensions

● Vector basis and trivector (n − 1) basis

2 3 4

1 4 3

1 2 4

1 3 2

∧ ∧
∧ ∧
∧ ∧
∧ ∧

e e e
e e e
e e e
e e e

1

2

3

4

e
e
e
e
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Dual basis

● Use special notation for wedge product of all 
but one basis vector:

1 2 3 4

2 1 4 3

3 1 2 4

4 1 3 2

= ∧ ∧
= ∧ ∧
= ∧ ∧
= ∧ ∧

e e e e
e e e e
e e e e
e e e e
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Dual basis

● Order of wedged basis vectors chosen so that

1 2 3 4i i = ∧ ∧ ∧e e e e e e
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Dual basis

● Instead of saying (n − 1)-vector,
we call these “antivectors”

● In n dimensions, antivector always means
a quantity expressed on the basis elements
having grade n − 1
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Vector / antivector product

● Wedge product between vector and antivector 
is the origin of the dot product:

● They complement each other, and “fill in” the 
volume element

( ) ( )
( )( )
1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3 1 2 3

a a a b b b
a b a b a b
+ + ∧ + +

= + + ∧ ∧
e e e e e e

e e e
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Vector / antivector product

● Many of the dot products you take are
actually vector / antivector wedge products

● For instance, N • L in diffuse lighting

● N is an antivector

● Calculating volume of extruded bivector
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Diffuse lighting
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Diffuse lighting

● N • L is really the antiscalar produced by

● N transforms with

● N • L transforms as

∧N L

( )det T−M M

( )
( )

( )

1

det
det

det

T

T

−

−

⋅

=
= ⋅

M M N ML
N M M ML

M N L
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Diffuse lighting
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The regressive product

● Grassmann realized there is another product 
symmetric to the wedge product

● Not well-known at all
● Most books on geometric algebra leave

it out completely

● Very important product, though!
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The regressive product

● Operates on antivectors in a manner 
symmetric to how the wedge product
operates on vectors

● Uses an upside-down wedge:

● We call it the “antiwedge” product

1 2∨e e
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The antiwedge product

● Has same properties as wedge product,
but for antivectors

● Operates in complementary space on
dual basis or “antibasis”
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The antiwedge product

● Whereas the wedge product increases grade, 
the antiwedge product decreases it

● Suppose, in n-dimensional Grassmann
algebra, A has grade r and B has grade s

● Then           has grade r + s

● And           has grade
n − (n − r) − (n − s) = r + s − n

∧A B

∨A B
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Antiwedge product in 3D

( ) ( )
( ) ( )
( ) ( )

1 2 2 3 3 1 3

2 3 3 1 1 2 1

3 1 1 2 2 3 2

∨ = ∧ ∨ ∧ =
∨ = ∧ ∨ ∧ =
∨ = ∧ ∨ ∧ =

e e e e e e e
e e e e e e e
e e e e e e e
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Similar shorthand notation

12 1 2

23 2 3

31 3 1

123 1 2 3

= ∨
= ∨
= ∨
= ∨ ∨

e e e
e e e
e e e

e e e e
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Join and meet

● Wedge product joins vectors together
● Analogous to union

● Antiwedge product joins antivectors
● Antivectors represent absence of geometry
● Joining antivectors is like removing vectors
● Analogous to intersection
● Called a meet operation
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Homogeneous coordinates

● Points have a 4D representation:

● Conveniently allows affine transformation 
through 4 x 4 matrix

● Used throughout 3D graphics

( ), , ,x y z w=P
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Homogeneous points

● To project onto 3D space, find where 4D 
vector intersects subspace where w = 1

( )

3D

, , ,

, ,

x y z w

x y z
w w w

=

 =  
 

P

P
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Homogeneous points
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Homogeneous model

● With Grassmann algebra, homogeneous model 
can be extended to include 3D points, lines, 
and planes

● Wedge and antiwedge products naturally 
perform union and intersection operations 
among all of these
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4D Grassmann algebra

● Scalar unit

● Four vectors:

● Six bivectors:

● Four antivectors:

● Antiscalar unit (quadvector)

1 2 3 4, , ,e e e e

12 23 31 41 42 43, , , , ,e e e e e e

1 2 3 4, , ,e e e e
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Homogeneous lines

● Take wedge product of two 4D points

( ) 1 2 3 4, , ,1x y z x y zP P P P P P= = + + +P e e e e

( ) 1 2 3 4, , ,1x y z x y zQ Q Q Q Q Q= = + + +Q e e e e
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Homogeneous Lines

● This bivector spans a 2D plane in 4D

● In subspace where w = 1, this is a 3D line

( ) ( ) ( )
( ) ( ) ( )

41 42 43

23 31 12

x x y y z z

y z z y z x x z x y y x

Q P Q P Q P
P Q P Q P Q P Q P Q P Q
∧ = − + − + −

+ − + − + −

P Q e e e
e e e
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Homogeneous lines
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Homogeneous lines

● The 4D bivector can be decomposed into two 
3D components:

● A tangent vector and a moment bivector
● These are perpendicular

( ) ( ) ( )
( ) ( ) ( )

41 42 43

23 31 12

x x y y z z

y z z y z x x z x y y x

Q P Q P Q P
P Q P Q P Q P Q P Q P Q
∧ = − + − + −

+ − + − + −

P Q e e e
e e e
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Homogeneous lines

● The 4D bivector no longer contains any 
information about the two points used
to create it

● Contrary to parametric origin / direction 
representation
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Homogeneous lines

● Tangent T vector is

● Moment M bivector is

3D 3D−Q P

3D 3D∧P Q

( ) ( ) ( )
( ) ( ) ( )

41 42 43

23 31 12

x x y y z z

y z z y z x x z x y y x

Q P Q P Q P
P Q P Q P Q P Q P Q P Q
∧ = − + − + −

+ − + − + −

P Q e e e
e e e
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Moment bivector
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Plücker coordinates

● Origin of Plücker coordinates revealed!
● They are the coefficients of a 4D bivector

● A line L in Plücker coordinates is

● A bunch of seemingly arbitrary formulas in 
Plücker coordinates demystified

{ }:= − ×L Q P P Q
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Homogeneous planes

● Take wedge product of three 4D points

( ) 1 2 3 4, , ,1x y z x y zP P P P P P= = + + +P e e e e

( ) 1 2 3 4, , ,1x y z x y zQ Q Q Q Q Q= = + + +Q e e e e

( ) 1 2 3 4, , ,1x y z x y zR R R R R R= = + + +R e e e e
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Homogeneous planes

● N is the 3D normal bivector
● D is the offset from origin in units of N

1 2 3 4x y zN N N D∧ ∧ = + + +P Q R e e e e

3D 3D 3D 3D 3D 3D

3D 3D 3DD
= ∧ + ∧ + ∧
= − ∧ ∧

N P Q Q R R P
P Q R
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Plane transformation

● A homogeneous plane is a 4D antivector

● It transforms by the inverse of
a 4 x 4 matrix

● Just like a 3D antivector transforms by the
inverse of a 3 x 3 matrix

● Orthogonality not common here due to
translation in the matrix
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Projective geometry

● We always project onto the 3D subspace 
where w = 1

4D Entity 3D Geometry
Vector (1-space) Point (0-space)
Bivector (2-space) Line (1-space)
Trivector (3-space) Plane (2-space)
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Geometric computation in 4D

● Wedge product

● Multiply two points to get the line containing
both points

● Multiply three points to get the plane containing 
all three points

● Multiply a line and a point to get the plane 
containing the line and the point
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Geometric computation in 4D

● Antiwedge product

● Multiply two planes to get the line where
they intersect

● Multiply three planes to get the point common
to all three planes

● Multiply a line and a plane to get the point
where the line intersects the plane
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Geometric computation in 4D

● Wedge or antiwedge product

● Multiply a point and a plane to get the signed 
minimum distance between them in units of the 
normal magnitude

● Multiply two lines to get a special signed
crossing value
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Product of two lines

● Wedge product gives an antiscalar
(quadvector or 4D volume element)

● Antiwedge product gives a scalar

● Both have same sign and magnitude

● Grassmann treated scalars and antiscalars as 
the same thing
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Product of two lines

● Let L1 have tangent T1 and moment M1

● Let L2 have tangent T2 and moment M2

● Then,

( )1 2 1 2 2 1∨ = − ∨ + ∨L L T M T M

( )1 2 1 2 2 1∧ = − ∧ + ∧L L T M T M
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Product of two lines

● The product of two lines gives a
“crossing” relation

● Positive value means clockwise crossing
● Negative value means counterclockwise
● Zero if lines intersect
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Crossing relation
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Distance between lines

● Product of two lines also relates to signed 
minimum distance between them

● (Here, numerator is 4D wedge product, and 
denominator is 3D wedge product)

1 2

1 2
d ∧
=

∧
L L
T T
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Ray-triangle intersection

● Application of line-line product

● Classic barycentric calculation difficult
due to floating-point round-off error

● Along edge between two triangles, ray can miss 
both or hit both

● Typical solution involves use of ugly epsilons 
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Ray-triangle intersection

● Calculate 4D bivectors for triangle
edges and ray

● Take wedge products between ray
and three edges

● Same sign for all three edges is a hit
● Impossible to hit or miss both triangles

sharing edge unless exact intersection
● Need to handle zero in consistent way
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Weighting

● Points, lines, and planes have “weights” in 
homogeneous coordinates

Entity Weight
Point w coordinate
Line Tangent component T
Plane x, y, z component
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Weighting

● Mathematically, the weight components can be 
found by taking the antiwedge product with 
the antivector (0,0,0,1)

● We would never really do that, though, 
because we can just look at the right 
coefficients
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Normalized lines

● Tangent component has unit length

● Magnitude of moment component is 
perpendicular distance to the origin



Berlin Colloquium for Scientific Visualization 2012 June 25, 2012
Berlin, Germany

Normalized planes

● (x,y,z) component has unit length

● Wedge product with (normalized) point is 
perpendicular distance to plane
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Programming considerations

● Convenient to create classes to represent 
entities of each grade

● Vector4D
● Bivector4D
● Antivector4D
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Programming considerations

● Fortunate happenstance that C++ has
an overloadable operator ^ that looks
like a wedge

● But be careful with operator precedence if you 
overload ^ to perform wedge product

● Has lowest operator precedence, so get used to 
enclosing wedge products in parentheses

● E.g., x ^ y > 0 compiles as x ^ (y > 0)
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Combining wedge and antiwedge

● The same operator can be used for
wedge product and antiwedge product

● Either they both produce the same scalar and 
antiscalar magnitudes with the same sign

● Or one of the products is identically zero
● For example, you would always want the 

antiwedge product for two planes because the 
wedge product is zero for all inputs
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Example application

● Calculation of 
shadow region 
planes from
light position
and frustum edges

● Simply a wedge 
product between 
edge line and
light position L



Berlin Colloquium for Scientific Visualization 2012 June 25, 2012
Berlin, Germany

Summary

Old school New school

Cross product → axial vector Wedge product → bivector

Dot product Antiwedge vector / antivector

Scalar triple product Triple wedge product

Plücker coordinates 4D bivectors

Operations in Plücker
coordinates

4D wedge / antiwedge products

Transform normals with
inverse transpose

Transform antivectors with adjugate 
transpose
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Supplemental Slides
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Points of closest approach

● Wedge product of line tangents gives complement of 
direction between closest points
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Points of closest approach

● Plane containing this direction and first line also 
contains closest point on second line
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Two dimensions

● 1 scalar unit

● 2 basis vectors

● 1 bivector / antiscalar unit

● No cross product

● All rotations occur in plane of 1 bivector



Berlin Colloquium for Scientific Visualization 2012 June 25, 2012
Berlin, Germany

One dimension

● 1 scalar unit

● 1 single-component basis vector
● Also the antiscalar unit

● Equivalent to “dual numbers”

● All numbers have form a + be
● Where e2 = 0
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Matrix inverses

● The i-th row of the inverse of M is
1/(det M) times the wedge product of
all columns of M except column i.
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Explicit formulas

● Define points P, Q and planes E, F,
and line L

( ) 1 2 3 4, , ,1x y z x y zP P P P P P= = + + +P e e e e

( ) 1 2 3 4, , ,1x y z x y zQ Q Q Q Q Q= = + + +Q e e e e

( ) 1 2 3 4, , ,x y z w x y z wE E E E E E E E= = + + +E e e e e

( ) 1 2 3 4, , ,x y z w x y z wF F F F F F F F= = + + +F e e e e

41 42 43 23 31 12x y z x y zT T T M M M= + + + + +L e e e e e e
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Explicit formulas

● Product of two points

( ) ( ) ( )
( ) ( ) ( )

41 42 43

23 31 12

x x y y z z

y z z y z x x z x y y x

Q P Q P Q P
P Q P Q P Q P Q P Q P Q

∧ = − + − + −

+ − + − + −

P Q e e e
e e e
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Explicit formulas

● Product of two planes

( ) ( ) ( )
( ) ( ) ( )

41 42 43

23 31 12

z y y z x z z x y x x y

x w w x y w w y z w w z

E F E F E F E F E F E F
E F E F E F E F E F E F

∨ = − + − + −

+ − + − + −

E F e e e
e e e
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Explicit formulas

● Product of line and point

( ) ( )
( ) ( )

1 2

3 4

y z z y x z x x z y

x y y x z x x y y z z

T P T P M T P T P M
T P T P M P M P M P M

∧ = − + + − +

+ − + + − − −

L P e e
e e
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Explicit formulas

● Product of line and plane

( ) ( )
( ) ( )

1 2

3 4

z y y z x w x z z x y w

y x x y z w x x y y z z

M E M E T E M E M E T E
M E M E T E E T E T E T

∨ = − − + − −

+ − − + + +

L E e e
e e
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